FAMILY OF 10G FIBER + COPPER RUGGED ETHERNET SWITCHES

10/100/1G/2.5G/5G/10G Base-T + 1G/10G/25G/40G/100G Compatibility

PRODUCT HIGHLIGHTS

- Boot time is less than 10 seconds
- Power consumption is less than 50 watts
- Lightly managed switching functionality
- Source code available for 3rd party applications
- Secure and rugged for the harshest environments

DESCRIPTION

Miracle Switch

Amphenol's multi-channel Rugged Ethernet Switchboxes is conduction cooled and configurable for system connectivity, various speeds, port types, as well as interoperation with several high-speed media converters and cable assemblies for system interfacing.

Many fiber optic and copper channels are available. In Amphenol's state of the art communications testing center, the switchbox is aggressively tested at line rates to RFC 2889 for switch and RFC 2544 for L2/L3 performance, latency, packet forwarding and other key items.

The switch is manufactured using derivates of Amphenol's MIL-DTL-38999 Series III connectors. These connectors contain standard AS39029 qualified Size 22D contacts and Octonet contacts. Amphenol's Octonet contacts are a proven design used in a variety of military programs. The Octonet is a Size 8 contact that houses four differential pairs, capable of a data rate of 4Gbps maximum and 1000hm impedance. This contact system has been tested and passed all specification requirements of AS39029 qualification.

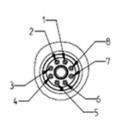
FEATURES & BENEFITS

- Up to 28 ports are capable of 10/100/1G Base-T compatibility
- Up to 6 ports are capable of 10/100/1G/2.5G/5G/10G Base-T compatibility
- Up to 32 ports are capable of up to 10/40G fiber
- 28V MIL-STD-740A input module see this specification for input power considerations.
- 50 watts or less typical power consumption
- Less than 10 second boot time from power on to traffic switching.
- Mil-spec power supply with hold-up capacitor and in-rush current limiting circuit
- Built in test functionality for power up, initiated, and continuous operation.
- MIL-DTL-38999 power, debug/maintenance, and data connectors
- Mil-spec black painted chassis with cold plate external conduction cooling
- Host management process with expanded Ethernet features including:
 - o CLI interface and web interface
 - o IPV4 / IPV6 routing
 - o Information on links and port counters
 - o Tagged and untagged vlan configurations
 - o Trunk link aggregation
 - o Port mirroring
 - o Port based QoS
 - o 802.1P QoS
 - o Rate limitations
 - o Loop detection
 - o Multicast IGMP snooping

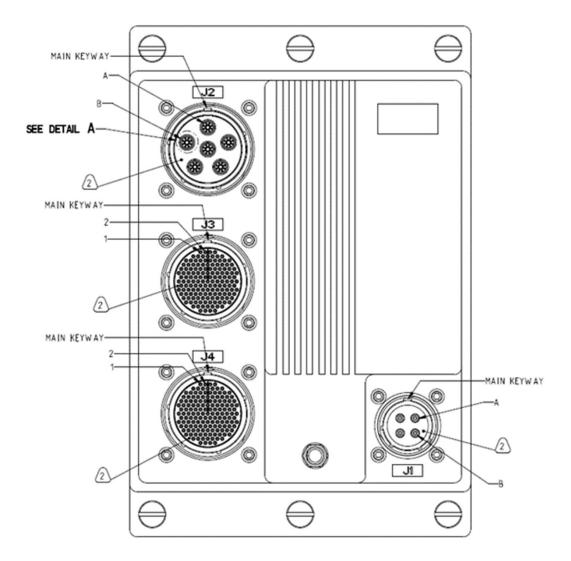
- o Reset functionality with authenticated Ethernet command
- o CNSA 1.0 algorithms
- o Secure Methods for logging into switch over management Ethernet
- o Approved zeroization methods
- o Denial of service protections
- o Firewall functionality
- o Secure booting
- o Cable diagnostics
- o Access control

ORDERING INFORMATION

Part Number	Dimensions (inches)	Capability			
CF-02WA00-19X	8.5 x 5.7 x 2.1	28 ports @ 10/100/1GBase-T 6 ports @ 10/100/1G/2.5G/5G/10GBase-T			
CF-02WA00-26X	6 x 5 x 13.2	6 ports @ 10/100/1GBase-T 32 ports @ up to 10GBase-SR (1GBase-SX supported; some 25G)			
CF-02WA00-27X	3.5 x 2.4 x 5	6 ports @ 10/100/1GBase-T 6 ports @ up to 10GBase-SR (1GBase-SX supported; some 25G)			



DIMENSIONAL INFORMATION - CF-02WADO-19X



DIMENSIONAL INFORMATION - 19X

DETAIL A OCTONET SCALE 4.000 6 PLACES

I/O CHART - 19X

		CHART				I	O CHART	r					I/O CHAR	г]
ONNECTOR	PIN D	DATA DIRECTION	SIGNAL	NAME	CONNECTOR	PIN ID	DATA	PORT	SIGNAL NAME		CONNECTOR	PIN D	DATA	PORT	SIGNAL	NAME	1
JI POWER 15-4P	D C A - S - C - D - SHLL -	IRECTION IN OUT 	2890C 2890C SAFETY ((HAS)	C_IN _RTN GROUND SIS NECTED	J2 DOBASE-T 23-65	A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-9 A-0UTER A-0UTER A-0UTER B-1 B-3 B-4 B-3 B-4 B-5 B-6 B-7 B-6 B-0UTER B-2 ENFR C-1 C-2 C-3 C-4	BI	1 1 2 	106Base-T_DA 106Base-T_DB 106Base-T_DB 106Base-T_DB 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DD 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA 106Base-T_DA		J2 100BASE-T 23-65	D-1 D-2 D-3 D-4 D-5 D-6 D-0 D-0 D-0 E-1 E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-0 DTER E-2 E-6 E-7 E-8 E-0 DTER F-1 F-2 F-3 F-4	81 		10GBas 10GBas		
NNECTOR	PIN	I/O C	POF			C-5 C-6 C-7 C-8 C-0UTER C-CENTER				- + -	NAL NAME	F-5 F-6 F-7 F-8 F-0UTER F-CENTER			10GBas 10GBas 10GBas CHA	e-T_D(+ e-T_D(- e-T_DD+ e-T_DD- SSIS SSIS RT PORT NO	SIGNAL NA
	1 2 6 7 13 15 15 16	81	2	168. 158. 158. 158. 158. 158. 158.	25E-T_DA+ 25E-T_DA- 25E-T_DB+ 25E-T_DB+ 25E-T_DC+ 25E-T_DC+ 25E-T_DD+ 25E-T_DD+		45 46 47 48 58 58 59 60 61	- B		168 168 168 168 168	ase-T_DA+ ase-T_DA- iase-T_DB- iase-T_DB- iase-T_D(+ iase-T_D(- iase-T_DD+ ase-T_DD-		9/ 92 91 10 10 10 10	5	BI	30	16Base-T_D 16Base-T_D 16Base-T_D 16Base-T_D 16Base-T_D 16Base-T_D 16Base-T_D 16Base-T_D 16Base-T_D
	3 4 9 10 17 18 19 20	BI	22	108: 158: 168: 168: 168: 168: 168: 168:	A SET DA - 2358 		\$9 50 52 53 62 63 64 65	B	1 26	108 108 108 108 108 108 108	352-T_DA+ 352-T_DA- 352-T_DA- 352-T_DB+ 352-T_DB+ 352-T_DC+ 352-T_DC+ 352-T_DD+ 352-T_DD+		10 11 11 11 12 12 12 12 12	9 0 1 2 1 2 3	ві	31	10Base=T_0 10Base=T_0 10Base=T_0 10Base=T_0 10Base=T_0 10Base=T_0 10Base=T_0 10Base=T_0 10Base=T_0
J4 GBase-T 23-151P	23 24 25 26 34 35 36 37	81	23	108 108 108 108 108 108 108 108	ase-T_DA- ase-T_DA- ase-T_DB- ase-T_DB- ase-T_DC- ase-T_DC- ase-T_DC- ase-T_DO- ase-T_DO-	J4 10Basi 23-15		В	1 27	108 108 108 108 108	lase-T_DA+ lase-T_DA+ lase-T_DB+ lase-T_DB+ lase-T_DC+ lase-T_DC+ lase-T_DC+ lase-T_DD+	1GB	4 11 15 15 15 12 12 12 12	5 7 8 6 7 8	BI	32	108ase-T_0 108ase-T_0 108ase-T_0 108ase-T_0 108ase-T_0 108ase-T_0 108ase-T_0 108ase-T_0
	28 29 30 31 40 41 42 43		24	168 168 168 168 168 168	ase-T_DA+ ase-T_DA- ase-T_DB+ ase-T_DB+ ase-T_DC+ ase-T_DC+ ase-T_DD+ ase-T_DD+		83 84 85 86 95 96 97 96	- B	1 26	108 108 108 108 108 108	Haso-T_DA+ Haso-T_DA- Haso-T_DB+ Haso-T_DB+ Haso-T_DC+ Haso-T_DC+ Haso-T_DD+ Haso-T_DD+		13 13 13 13 14 14 14 14	3 5 2 3 8 9	BI	33	108 ase-T_L 108 ase-T_L 108 ase-T_L 108 ase-T_L 108 ase-T_L 108 ase-T_L 108 ase-T_L 108 ase-T_L 108 ase-T_L
	ALL OTHER PINS	2		- NO	CONNECT		87 88 90 90 100 102 103		1 29	108 108 108 108 108	iase-T_DA+ iase-T_DA+ iase-T_DB+ iase-T_DB+ iase-T_DC+ iase-T_DC+ iase-T_DD+ iase-T_DD+ iase-T_DD+		13 13 13 13 14 14 14 15 15	7 8 9 5 6 0	ві	34	1GBase-T_L 1GBase-T_L 1GBase-T_L 1GBase-T_L 1GBase-T_L 1GBase-T_L 1GBase-T_L 1GBase-T_L 1GBase-T_L

SEE SHEET 2

QUALIFICATION STANDARDS

Parameter	Detail	Requirement	Test Method			
	Storage	Sea level to 50,000 ft @ - 57°C	MIL-STD-810G Method 500.5 Procedure I			
Low Pressure (Altitude)	Operational	Sea level to 40,000 ft @ - 54°C	MIL-STD-810G Method 500.5 Procedure II			
	Explosive Decampression	8,000 ft to 23,100 feet in Sms	MIL-STD-810G Method 500.5 Procedure IV			
	Storage, cyclic	+95°C	ML-STD-8106 Method 501_5 Procedure I			
High Temperature extremes	Operational, cyclic	+55°C	MIL-STD-8106 Method 501_5 Procedure II			
	Operational, constant	+71°C for 30 Minutes	MIL-STD-8106 Method 501_5 Procedure II			
	Storage, cyclic	-57°C	MiL-STD-8106 Method 502_5 Procedure I			
Low Temperature extremes	Operational, cyclic	-40°C	MiL-STD-8106 Method 502_5 Procedure II			
emennes	Operational, sea level, constant	-65°C for 120 Minutes	MIL-STD-8106 Method 502.5 Procedure II, as per F-16			
Temperature	Shacir, from constant	-54°C to +71°C at 125°C/Minute	MIL-STD-8106 Method 503.5 Procedure I-B			
Combined temperature- altitude-humidity	Operational, 18 cycles	-40°C to +71°C, Sea level to 60,000 ft	MIL-STD-8106 Method 520.3 Procedure II			
Humidity	Operational and Non-Operational, aggravated cycle	95% ± 4% Humidity, +30°C to +60°C, 10 cycles	MIL-STD-810F Method 507.5 Procedure II			
Sand and Dust	Operational and Non-Operational, blowing	< 150um dust, 150um to 850um sand	MIL-STD-810G Method 510.5 Procedure I (Dust) Procedure II (Sand)			
Rain	Operational, Dripping	7 gal/ft2/hr, 40 mph for 30 minutes	MIL-STD-8106 Method 506.5 Procedure II			
Fungus	Non-Operational	7-day growth	MIL-STD-810G Method 508.6			
Salt Fog	Operational and Non-Operational, exposure	Four 24-hour wet/dry cycles	MIL-STD-810G Method 509.5			
Explosive Atmosphere	Operational	At site and 40,000 ft altitudes	MIL-STD-8106 Method 511_5 Procedure I			
Acceleration, structural	Limit Loads	Performance at ±10.0g applied individually along all 3 axes	MIL-STD-8106 Method 513.6 Procedure I			

QUALIFICATION STANDARDS CONT.

	Ultimate Loads	Withstand without structural failure ±15.0g applied individually along all 3 axes	ML-STD-810F Method 513.6 Procedure II		
	Crash Landing	Remain captive, 40g fore, 20g aft and clown , 10g up, 18g left and right	MIL-STD-810F Method 513.6 Procedure II		
Sharik — Functional	Operational	20g, 11ms nominal, 3 blows each direction, each axis (18 total), terminal peak sawtooth	MIL-STD-8106 Method 516.6 Procedure I		
Shorik — Crash Hazard	Non-Operational	40g, 11ms nominal, 2 blows each direction, each axis (12 total)	MIL-STD-8106 Method 516.6, Procedure V		
Shack – Bench Handling	Non-Operational	4° drop, 1 drop per edge per face (24 total)	ML-STD-8106 Method 516.6, Procedure VI		
Vibration	Operational, Performance, Jet aircraft	30 mins, 0.02 g2/Hz to 0.04 g2/Hz, 15 - 2000 Hz, Overall 4.46nms	MIL-STD-810G Method 514.6, Procedure I, Category 12, Annex D, Fig 514.604		
	Non-Operational, Endurance, Jet aircraft	60 mins, 0.04 g2/Hz to 0.06 g2/Hz, 15 - 2000 Hz, Overall 9.26nms	MIL-STD-810G Method 514.6, Procedure I, Category 12, Annex D, Fig 514.60-1		
	Operational, Gunfire Shock	7.5 min sweeps, 5 to 15 g, 66 to 856 Hz	ML-STD-810G Method 519.6, Procedure II		
	Operational, UH-60 Main Rotor speeds and blade numbers	4 hours, 0.001g2/Hz to 0.01g2/Hz, 3 to 500 Hz	MIL-STD-810G Method 514.6, Procedure I, Category 14, Annex A & Annex D, Table 514.60-111		
Acoustic Noise	Operational	30 mins, 140 dB overall, 50 to 16000 Hz	MIL-STD-8106 Method 515.6 Procedure I		
Conducted Emissions	Operational	Power Leads, 30 Hz to 10 kHz	ML-STD-461G CE101 Par 5.4, CE101-4 Curve #2		
	Operational	Power Leads, 10 kHz to 10MHz	ML-STD-4616 CE162 Par 5.5, Fig CE102-1 Basic Curve		
Canducted Susceptibility	Operational	Power leads, 30Hz to 150 kHz	ML-STD-4616 C5101 Par 5.7, Fig C5101-1 Curve #2		
	Operational	Bulk cable injection, 10 kHz to 200MHz	ML-STD-4616 C5114 Par 5.12, Fig C5114-1 Curve #5		
	Operational	Bulk cable injection, impulse excitation, 30Hz for one minute	ML-STD-4616 CS115 Par 5.13, Fig CS115-1		

QUALIFICATION STANDARDS CONT.

	Operational	Damped sinuscidal transients, cables and power leads, 10kHz to 100MHz, 5 minutes	ML-STD-461G C5116 Par 5.14, Fig C5116-1 and C5116-2			
Radiated Emissions	Operational	Magnetic field, 30Hz to 100kHz	ML-STD-4616 RE161 Par 5.17, Fig RE101-1 and Fig RE101-2			
	Operational	Electric field, 10kHz to 186Hz	MIL-STD-461G RE162 Par 5.18, Fig RE102-3 Food wing external and Food wing internal < 25m			
	Operational	Magnetic field, 30 Hz to 100 kHz	ML-STD-461G R5101 Par 5.20 Fig R5101-2 Army			
Radiated Susceptibility	Operational	Electric field, 2 MHz ta 18 GHz	MiL-STD-461G R\$103 Par 5.21, Table XI, Aircraft Internal Army			
	Operational, normal cendition	Load measurements, ask for info	MIL-STD-704F Crg1 MIL-HD8K-704-8 LDC-101			
	Operational, normal cendition	Steady state limits, 22 Vdc to 29 Vdc	MIL-STD-704F Crg1 MIL-HD8K-704-8 LDC-102 Tests A, B, C			
	Operational, normal condition	Voltage distortion spectrum	ML-STD-704F Chg1 Fig 15 ML-HD8K-704-8 LDC-108 Tests A thru K			
	Operational, normal cendition	Total ripple	MIL-STD-704F Chg1 Fig 15 MIL-HD8K-704-8 LDC-104, Table LDC104-II			
Power Supply	Operational, normal cendition	Normal voltage transients, 18Vdc to 29Vdc	MIL-STD-704F Chg1 Fig 13 MIL-HD8K-704-8 LDC-105 Tests AA thru RR			
	Operational, transfer interrupt	Power interrupt, 50ms, 22Vdc to 29Vd c	MIL-STD-704F Chg1 MIL-HD8K-704-8 LDC-201			
	Operational, abnormal condition	Steady state limits, 20.0 Vdc and 31_5Vdc, 30 minutes	MIL-STD-704F Chg1 MIL-HD8K-704-8 LDC-301 Tests A and B			
	Operational, abnormal cendition	Abnormal voltage transients, abnormal condition	MIL-STD-704F Chg1 Fig 14 MIL-HD8K-704-8 LDC-202, Tests AAA thru NNN, 7 to 50V			
	Operational, emergency condition	Steady state limits, 18 Vdc to 29 Vdc	MIL-STD-704F Chg1 MIL-HD8K-704-8 LDC-401			

QUALIFICATION STANDARDS CONT.

	Operational, starting	Starting voltage transients, 12 Vdc to 29 Vdc	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-501, Table LDC501-IV			
Power Supply (cont.)	Operational, power failure and automatic recovery	Power failure, from 100ms to 7 seconds	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-601 Tests A thru D			
	Operational, power failure	Phase reversal protection/ prevention	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-602			
Chassis Grounding	Operating	Allow for proper electrical bonding through designated external stub and dedicated pins on connectors	SAE-AS-50881H			
Electrical Bonding	Operating	Primary Chassis ground connection for electrical bonding provided by designated external stub	MIL-STD-464C, Paragraph 5.11.3			
Mounting	For vibration tolerance	4x 10-32 captive screws				