

M4094 SERIES DC/DC POWER SUPPLY

DESCRIPTION

M4094 800W 3U VPX DC to DC Power Supply, VITA 62 Compliant, SOSA[™] aligned, It converts power from the MIL-STD-704 270Vdc bus to deliver the 12Vdc and 3.3VAUX supplies required by SOSA-aligned systems. Up to 800W output power and EMI filters included. Using the new VITA 62.2 connector system, the proper clearances are provided to avert creepage issues and corona at high altitudes. M4094 is designed for high shock and vibration environments in applications like avionics and airborne mission computing. VITA 46.11 Tier II system management is now also available. The M4094 is the ultimate solution for military applications that require 3U form factor power solution aligned with the SOSA technical standard.

FEATURES

- VITA 62 Compliant
- Aligned with the SOSA Technical Standard
- Wide input range
- Connectors are VITA 62.2 to increase breakdown voltage
- Up to 800W output power¹
- Remote sense
- Fixed switching frequency (220 kHz / 110KHz)
- External synchronization capability
- Indefinite short circuit Protection

- Over-voltage shutdown with autorecovery
- Reverse battery protection
- Over temperature shutdown with auto-recovery
- Reverse battery protection
- EMI filtersincluded
- System Management: protocol per VITA 46.11
 - o Output voltages and currents o Input voltage
 - o Card temperature
 - o Card system status

HOW TO ORDER

PART NUMBER	CF-02EM4094	DC/DC Power Supply

PRODUCT SPECIFICATIONS:

DC Input	Works Through MIL-STD-704 (A-F) Normal and Abnormal Steady State	Works Through MIL-STD-704(E-F) Normal transients							
270VDC	Protected MIL-STD-704(B-D) Normal/Abnormal Transients Protected MIL-STD-704(E-F) Abnormal Transients								
DC Output	VS1:12V up to 64A 3.3VAux: 3.3V up to 15A								
Isolation	Over 20 MΩ at test voltage: 500V between Input and Output. 500V between Input and Case. 100V between Output and Case.								
Efficiency	Up to 91%								
Isolation	Over 20 MΩ at test voltage: 500V between Input and Output. 500V between Input and Case. 100V between Output and Case.								
Ripple and Noise	Typically, lessthan 50mVp-p (max. 1%p) 10µF capacitor on load across Tempera). Measured across a 0.1µF capacitor and ature Range.							
Load Transient Overshoot and Undershoot	Output dynamic response of less than 5 to regulation in less than 1mSec	5% at load Step of 60%-90%. Output returns							
System	1) I2C D	ata available:							
options	3) VITA 46.11 Tier II IPMC Ir	nput voltage and currents Card temperature Card status							
Normal Quiescent Current	Inhibited Output: 20mA (3.3VAux Only) Disabled Input: 17mA (All Outputs Off)								

ENVIRONMENTAL SPECIFICATIONS:

Design to Meet MI	L-STD-810G
Temperature	Operating: –55°C to +85°C at unit edge Storage: –55°C to +125°C Designed to meet 600 thermal cycles durability test
Fungus	Does not support fungus growth, in accordance with the guidelines of MIL- STD-454, Requirement 4.
Altitude	Method 500.5, Procedure I & II Storage/Air Transport: 40 kft Operation/Air carriage: 70 kft
Humidity	Method 507.5, Up to 95%
Salt Fog	Method 509.5
Shock	Method 516.6 40g, 11msec saw-tooth (all directions)

PROTECTIONS:

Input	Inrush Current Limiter	Peak value of 5 x IIN for initial inrush currents lasting more than 50µSec.
	Under Voltage	Unit shuts down when input steady state voltage drops below 200VDC. Automatic restart when input voltage returns to nominal range.
	Passive over voltage protection on Aux outputs	Transorb, selected at $25\% \pm 5\%$ above nominal voltage, is placed across the output for passive voltage limit.
Output	Active over volt- age protection on VS# outputs	20% \pm 5% above nominal voltage. Automatic recovery when output voltage drops below threshold
	Overload / Short-Circuit protection	Continuous protection (10-30% above maximum current) for unlimited time (Hiccup). Automatic recovery when overload/short circuit removed.
General	Over Tempera- ture Protection	Automatic shutdown at internal temperature of $95 \pm 5^{\circ}$ C. Automatic recovery when temperature drops below $90 \pm 5^{\circ}$ C

Functions and Signals - According to VITA 62:

SIGNAL NAME	TYPE	DESCRIPTION
FAIL	Output	Indicates to other modules in the system that a failure has occurred in one of the outputs.
SYSRESET	Output	Indicates to other modules in the system that all outputs are within their working level.
INHIBIT	Input	Controls power supply outputs. This signal in conjunction with EN- ABLE controls the outputs.
ENABLE	Input	Controls power supply outputs. This signal in conjunction with INHIBIT controls the outputs.
GA0*, GA1*, GA2*	Input	Used for geographical addressing. GA2 is the most significant bit and GA0 is the least significant bit. ¹
SCL_A, SDA_A	Bidirectional	I2C bus Clock and Data respectively. Through this bus the voltage and temperature readouts can be shared. ¹
SCL_B, SDA_B	Bidirectional	Redundant I2C bus Clock and Data respectively. Through this bus the voltage and temperature readouts can be shared. ¹
Sync_In	Input	The Sync_In signal is used to allow the power supply frequency to sync with the system frequency. ¹ Optional.
VOUT SENSE	Input	The SENSE is used to achieve accurate load regulations at load terminals (this is done by connecting the pins directly to the load's terminals).
3.3Vaux A.C.S	Bidirectional	Support 3.3Vaux Active current share between Outputs. See Current Share para. ^{1 2 3} (Optional, non-SOSA configuration)
PO#_SHARE	Bidirectional	Support current share between Outputs ¹
Alert Bit	Output	Indicates to other modules in the system about Input Voltage loss.

Notes:

- 1. Signal referenced to SIGNAL RTN.
- 2. When not used leave open

3 for 3.3Vaux In Passive or Non-Current Share configuration, this pin is Internally Disconnected

Inhibit and Enable Functionality

INHIBIT*	Low	Low	High	High
ENABLE*	Low	High	Low	High
VS1	OFF	OFF	ON	OFF
3.3V	ON	OFF	ON	OFF

Inhibit and Enable Input stage

SysRst and Fail bit Output

GAx and Sync_In Stage

SIMPLIFIED BLOCK DIAGRAM:

DETAILED INFORMATION:

M4094 Input Voltage Operation.

The M4094 steady state operation is per Mil-STD-704. Unit will work thorough all Mil-STD-704E/F Transients. Unit is protected during Abnormal transients and interrupts.

Outputs VoltageRegulation

The M4094 contains accurate internal sense lines to keep output voltage at less than 2% regulation for all Line/ Load and temperature range

Output Voltage Range	12V/64A	3.3V/15A
Active Current Share	11.85V - 12.15V	3.28V - 3.42V
Passive Current Share	N/A	3.25V - 3.45V

Sense Lines

Sense Lines are provided for VS1, VS2 and VS3 output to compensate line voltage drop. Sense Lines proper connection is shown in Figure 3.

Each VSx output has its own Sense Lines, additional common Sense RTN Line is provided for all VSx Outputs (VITA 62 Standard).

Contact Factory for Sense configuration different than the VITA 62 standard

EFFICIENCY Efficiency curve at 270V line room temperature

Current Share (C.S)

Current Share of two or more units is optional (Contact Factory) Unit can support parallel configuration of two units. VS1 & VS2 and Aux will current share with about 5-10% load balance.

The unit can support two methods of current sharing:

Passive Current Sharing (P.C.S)

Current sharing is done in open loop, output voltage drops as a function of output load. Load Balance of about 5-10% load is expected.

Active current sharing (A.C.S)

Current sharing is done in a closed loop. All paralleled outputs are compared and feedback is used to balance their load current. The result is a more stable, less sensitive output voltage without voltage drop. Load Balance of about 2-5% load is expected.

Current share connection between two Units.

For a required output to current share please connect the following Pins between the two units

- PO#_Sense & PO#_Sense_RTN (for best performance, Pins from paralleled units should be connected to a single point and as close as possible to the load point)
- VS1_SHARE (A7)
- VS1_ACS (C7)
- 3.3Vaux_SHARE (B7)
- 3.3Vaux_ACS (D1) Optional¹²

Typical ACS Dynamic Load of Two 12V Paralleled Outputs

Notes

1. When not used, 3.3Vaux A.C.S can be left open.

When ordering 3.3Vaux P.C.S or 3.3Vaux Non-Current Share unit, this pin is Internally disconnected

2. 3.3Vaux ACS (Pin D1) is not required by SOSA and is optional.

Communication Protocol

Unit communication protocol can be configured as VITA 46.11 Tier 2 IPMC or Custom IPMI compatible protocol. For more details on IPMI or VITA 46.11 protocol refer to para. 4.1 or 4.2 respectively below.

Custom IPMI Protocol

Electrical Parameters

Vcc: 3.3VDC Pull-up: 2.2kOhm Input capacitance: 100pf

Slave Device Addressing

- 256 address spaces
- Baud rate: 200kHz maximum
- 7 Bit Protocol
- Support Slot Addressing per VITA 62

	MSB							LSB
Slot Number	A6	A5	A4	A3	A2/GA2*	A1/GA1*	A0/GA0*	R/W
Slot0	0	1	0	0	0	0	0	
Slot1	0	1	0	0	0	0	1	
Slot2	0	1	0	0	0	1	0	
Slot3	0	1	0	0	0	1	1	

Communications Supported

Read Command – 21Hex, deliver 64Bytes of Data. (More commands are available by request) The communication starts when the master sends a start followed by the unit slave address, command, checksum and a stop. A second start followed by the slave address and a read will be followed by a 64 Bites response.

S	S Slave R/W A Address		A	Command	A	Check sum	A	P
	A6:A0	0	0	21 Hex	0	DF Hex	0	

S	Slave Address	R/M	A	DATA	Α	DATA	Α	DATA	Α		DATA	Α	Check sum	N/A	Р
	A6:A0	1	0	D7:D0	0	D7:D0	0	D7:D0	0	•••	D7:D0	0	D7:D0	1	

Command - 21Hex read all 64 Bytes

S -Start

P- Stop

Master Transmit Unit Transmit

MEMORY SPACE:

Response Data Type		Meaning	Interpretation	Reading		
Byte #				Range		
0	U Integer, MSB First	Echo of Command		21 Hex		
1		N/A		00 Hex		
2-3	S Integer, MSB First	Temperature	T(C°)=+/- 7bit Dec	-55°C to 125°C		
		-55C to 120C				
4-5	U Integer, MSB First	12V VS1 Voltage	V(out) = Data m2	20.48V		
6-7	U Integer, MSB First	3.3V VS2 Voltage	$V(out) = Data \cdot m2$	20.48V		
8-9	U Integer, MSB First	N/A	N/A	N/A		
10-11	U Integer, MSB First	N/A	N/A	N/A		
12-13	U Integer, MSB First	N/A	N/A	N/A		
14-15	U Integer, MSB First	N/A	N/A	N/A		
16-17	U Integer, MSB First	12V VS1 Current	V(out) = Data m3	80A		
18-19	U Integer, MSB First	3.3V VS2 Current	V(out) = Data m3	20A		
20-21	U Integer, MSB First	N/A	N/A	N/A		
22-23	U Integer, MSB First	N/A	N/A	N/A		
24-35	U Integer, MSB First	N/A	N/A	N/A		
26-27	U Integer, MSB First	N/A	N/A	N/A		
28-29	U Integer, MSB First	Reserved	00Hex			
30-31	U Integer, MSB First	Reserved	00Hex			
32-51	Character String (ASCII)	Part Number	M4094-xxx* (Note1)	20 Characters		
52-53	Decimal, MSB First	Serial Number, 2MSB Dig	X,X Dec (Note2)	Optional		
54-55	Decimal, MSB First	Serial Number, 2LSB Dig	X,X Dec (Note2)	Optional		
56-57	Decimal, MSB First	Date Code	Week, Year (Note3)	Optional		
58-59	Character String (ASCII)	Hardware Rev	B01 & B02 Boards (Note4)	2 Characters		
60-61	Decimal, MSB First	Firmware Rev	X,X,X,X Dec (Note5)	4 digits		
62	U Integer, MSB First	Reserved		AA Hex		
63	U Integer, MSB First	Zero Checksum	Value required to make the sur	m of bytes 0 to 62		
			added to a multiple of 256	ultiple of 256		

Notes 1 to 5

1. Part Number Example: M4465

Byte No'	32	33	34	35	36	37	38	39-51
Character	Μ	4	4	6	5	(-)	4	0
Hex	4D	34	34	36	35	2D	34	00

2. Serial Number Example: 25

Byte No' 52		53		54		55		
Dec Number	0	0	0	0	0	0	2	5
Binary	"0000"	"0000"	"0000"	"0000"	"0000"	"0000"	"0010"	"0101"

3. Date Code Example: week 35 of 2018

Byte No'	56		57		
Dec Number	3	5	1	8	
Binary	"0011"	"0101"	"0001"	"1000"	

4. Hardware Rev Example: B01 Rev (-), B01 Rev A

Byte No'	58	59
Character	(-)	Α
Hex	2D	41

5. Firmware Rev Example: 2.1.0.0

Byte No'	60		61		
Dec Number	2	1	0	0	
Binary	"0010"	"0001"	"0000"	"0000"	

VITA 46.11 Tier 1 IPMC Protocol

Sensors included are seen in the table below. Units are designed to be upgradable to 46.11 Tier 3 compliance upon release of that specification

Record ID	Sensor ID	Sensor Type	Name
0000	00	F0h	FRU State Sensor
0001	01	F1h	System IPMB Link Sensor
0002	02	F2h	FRU Health Sensor
0003	03	02h	FRU Voltage Sensor
0004	04	F3h	FRU Temperature Sensor
0005	05	F4h	Payload Test Results Sensor
0006	06	F5h	Payload Test Status Sensor
0100	07	02h	VS1 Voltage
0103	0A	02h	3.3Vaux Voltage
0106	0D	03h	VS1 Current
0109	10	03h	3.3Vaux Current
010C	13	01h	Analog Temperature
9999	N/A	N/A	Device Management

Sync In and Switching Frequency:

Free running switching frequency without Sync In signal applied is 220kHz ±5%. External Sync should be in the

range of 200kHz to 300kHz, 3.3V CMOS standard logic levels and duty cycle between 20% and 80%.

The M4094 will sync after 32 cycles of within tolerance external clock cycles. The unit will revert to its internal clock frequency upon any out of specification clock cycles and will need 32 good cycles to re sync to the external clock.

Note: Sync is optional: Contact factory to add Sync_in functionality and to customize its configuration values.

Pin Assignments

Pin Number	Pin Name		
P1	-DC_IN		
P2	+DC_IN		
LP1	CHASSIS		
P3	VS1		
P4	POWER_RETURN		
P5	POWER_RETURN		
LP2	3.3Vaux		
P6	VS1		
A8	VS1_SENSE		
B8	3.3Vaux_SENSE		
C8	VS1_SENSE / N.C		
D8	SENSE_RETURN		
A7	VS1_SHARE		
B7	3.3Vaux SHARE		
C7	VS1_ACS		
D7	SiG_RTN		
A6	SCL_B		
B6	SDA_B		
C6	N.C.		
D6	SYSRESET*		
A5	GA0*		
B5	GA1*		
C5	SCL_A		
D5	SDA_A		
A4	N.C.		
B4	N.C		
C4	N.C		
D4	NC		
A3	Sync In / N.C.		
B3	N.C.		
C3	N.C (NED)		
D3	N.C (NED RETURN)		
A2	N.C.		
B2	FAIL*		
C2	INHIBIT*		
D2	ENABLE*		
A1	N.C.		
B1	N.C.		
C1	GA2*		
D1	3.3Vaux ACS/N.C.		

Notes:

Pin assigned as Function/N.C is optional and can be configured as not connected

Previous configurations had 3.3Vaux_ACS on Pin B4 and

Sync_In (labeled as Ref Clk(+)) on Pin A1.

Pin D1 was previously labeled as Alert/N.C. and was unused.

Pin A3 was previously labeled as Ref_Clk (-) / N.C. and was unused

OUTLINE DRAWING:

Notice: Specifications are subject to change without notice. Contact your nearest Amphenol Corporation Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all connectors.

AMPHENOL is a registered trademark of Amphenol Corporation. PRELIMINARY

©2023 Amphenol Corporation REV:

40-60 Delaware Avenue Sidney, NY 13838 amphenol-aerospace.com | amphenolmao.com

Jared Sibrava | +1 (607) 643-1845 | jsibrava@amphenol-aao.com amphenol-aerospace.com