M6212 SERIES DC/DC POWER SUPPLY ## **PRODUCT HIGHLIGHTS** - MINIATURE - HIGH DENSITY - HIGH EFFICIENCY - SINGLE OUTPUT - DC/DC POWER SUPPLY - UP TO 200 W ## **Applications** Military (ground-fix, shipboard), Ruggedized, Telecom, Industrial ## **Special Features** - Miniature size - High efficiency - Wide input range - Input / Output isolation - Remote Inhibit - Zero Voltage Switching Topology - Fixed switching freq. (250 kHz) - External sync capability - EMI filters included - Remote sense compensation - Indefinite short circuit protection with auto-recovery - Over-voltage shutdown with auto-recovery - Over temperature shutdown with auto-recovery # **Electrical Specifications** #### **DC** Input Voltage range: 18 to 48 V_{DC} Transient protection (no damage) IAW MIL-STD-1275A (100 V for 50 ms) and IAW MIL-STD-704A (80 V for 0.1 s) # **Line/Load regulation** Less than ±1% (No load to full load, –55 °C to +85 °C, and over input voltage range). #### Ripple and Noise: Less than 50 mV_{p-p}, typical (max. 1%) without external capacitance. When connected to system capacitance ripple drops significantly. #### **DC Output** Voltage range: 1.5 to 28 V_{DC} Current range: 0 to 40 A Power range: 0 to 200 W # **Efficiency** Typical 90-92% - (full load, room temperature) # **Transient Over-and-undershoot** Output resistance at load change of 50%-100% is 30-200 m Ω (depending on output voltage). Output back to steady stated within 300-500 μs #### **Isolation** Input to output: $200 \, V_{DC}$ Input to case: $200 \, V_{DC}$ Output to case: $100 \, V_{DC}$ #### **EMC** Designed to meet MIL-STD-461F* CE101, CE102, CS101, CS114, CS115, CS116, RE101, RE102, RS101, RS103 #### **Turn on Transient** No overshoot ^{*} EMC compliance achieved when tested with 5 µH LISNs, shielded harness and static resistive load. #### **Protections *** #### Input - Under Voltage Lock-Out Unit shuts down below 16.5 V_{DC} ± 1 V_{DC} - Over Voltage Lock-Out Unit shuts down above 52 V_{DC} ± 2 V_{DC} #### **Output** - Active Over Voltage Protection Internal control protects unit and load (no damage) if output exceeds nominal voltage by 10% ± 5% due to internal failure. - Passive Over Voltage Protection Transorb across output selected at 20% ± 10% above nominal voltage. - Current Limiting Continuous protection (10-30% above maximum current) for unlimited time (Hiccup). #### General Over Temperature Protection Output shuts down if base plate temperature exceeds +105 °C ± 5 °C. Output recovers automatically when base plate temperature returns to below $+95 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$. #### **Environmental Conditions **** Designed to meet MIL-STD-810F #### **Temperature** Operating: -55 °C to +85 °C (measured at base plate) Storage: -55 °C to +125 °C <u>Humidity</u> Method 507.4 Up to 95%. Altitude Method 500.4 Procedures I & II, up to 70,000 ft. Salt Fog Method 509-4 #### Vibration Method 514.5 Category 4 General minimum integrity exposure IAW Figure 514.5C-17, 1 hour per axis. Shock Method 516.5 Procedure I Saw-tooth, 20 g peak, 11 ms #### Reliability 150,000 hours, calculated per MIL-STD-217F Notice 2 at +85°C baseplate, Ground fixed. ## **Environmental Stress Screening (ESS)** Including random vibration and thermal cycles is also available. Please consult factory for details. ^{*} Thresholds and protections can be modified / removed – please consult factory. ^{**} All environmental requirements can be tailored per customer needs – please consult factory. ## **Functions and Signals** #### **INHIBIT** The INHIBIT signal is used to turn the power supply ON and OFF. TTL "1" or OPEN – will turn on the power supply. (For normal operation leave the signal not connected.) TTL "0" – will turn off the power supply. #### **SYNC IN** The SYNC signal is used to allow the power supply frequency to sync with the system frequency. The synchronization frequency should be 250 kHz \pm 10 kHz. When not connected the power supply will work from internal clock at 250 kHz ± 10 kHz. #### **SIGNAL RTN** The SIGNAL RTN is referenced to the VIN RTN. This is used as grounding for SYNC IN and INHIBIT signals. #### **SENSE** The SENSE is used to achieve accurate load regulations at load terminals (this is done by connecting the pins directly to the load's terminals). The use of remote sense has a limit of voltage dropout between converter's output and load terminals of 2% to 10% of voltage output. When not used connect SENSE to OUT and SENSE RTN to OUT RTN ### **Typical Connection Diagram** # **Pin Assignment** **Connector type:** Positronic DD44M3000S-759.1 or eq. **Mates with:** Positronic DD44S###0S-759.0 or eq. | Pin# | Function | |------|---------------| | 1 | OUT RTN (–) | | 2 | OUT RTN (–) | | 3 | OUT RTN (–) | | 4 | OUT RTN (–) | | 5 | OUT (+) | | 6 | OUT (+) | | 7 | OUT (+) | | 8 | OUT (+) | | 9 | SENSE RTN (–) | | 10 | N.C. | | 11 | INHIBIT | | Pin# | Function | |------|-------------| | 12 | VIN (+) | | 13 | VIN (+) | | 14 | VIN RTN (–) | | 15 | VIN RTN (–) | | 16 | OUT RTN (–) | | 17 | OUT RTN (–) | | 18 | OUT RTN (–) | | 19 | OUT RTN (–) | | 20 | OUT RTN (–) | | 21 | OUT (+) | | 22 | OUT (+) | | Pin# | Function | |------|-------------| | 23 | OUT (+) | | 24 | OUT (+) | | 25 | SENSE (+) | | 26 | SIGNAL RTN | | 27 | SYNC IN | | 28 | VIN (+) | | 29 | VIN RTN (–) | | 30 | VIN RTN (–) | | 31 | OUT RTN (–) | | 32 | OUT RTN (–) | | 33 | OUT RTN (–) | | Pin# | Function | |------|-------------| | 34 | OUT RTN (–) | | 35 | OUT (+) | | 36 | OUT (+) | | 37 | OUT (+) | | 38 | OUT (+) | | 39 | OUT (+) | | 40 | N.C. | | 41 | VIN (+) | | 42 | VIN (+) | | 43 | VIN RTN (–) | | 44 | CHASSIS | Note: All identically designated pins should be connected together for best performance. ## **Outline Drawing** # **Heat Dissipation Surface** #### **Notes** - 1. Dimensions are in Inches [mm] - 2. Tolerance is: .XX \pm 0.01 IN .XXX \pm 0.005 IN 3. Weight: TBD Note: Specifications are subject to change without prior notice by the manufacturer