Raptor Go 1G/10G Ethernet Switches TSN/MACSec 1G/10GBase-T Enabled **PDS - 459** #### **Next Generation Ethernet Switch Units** Amphenol's next-generation RaptorGo TSN/MACSec Enabled 1G/10GBase-T Ethernet, standalone switches operate with 34-36 individual channels, supporting speeds of up to 1GBase-T and 10GBase-T. Management is handled by on-board quad-core ARM processors, each with ample memory for complex networking applications. Several versions of the RaptorGo switch are available which have different quantities of the 10GBase-T (six and eight) compatible ports while each of the units has 28 channels of up to 1GBase-T. #### **FEATURES** - 34-36 channel standalone Ethernet switch - o 6 channels 10GBase-T: 28 channels 1GBase-T - o 8 channels 10GBase-T; 28 channels 1GBase-T - Support for multiple speeds: 10/100/1G/2.5G/5G/10GBase-T - Layer 2 and Layer 3 network management capabilities, including support for time-sensitive networking (TSN), MACsec, and advanced routing applications - Dedicated management interfaces via dual RS-232 and 1GBase-T - Powered by dual quad-core ARM CPUs with DDR4-SDRAM, flash memory, and EEPROM. - Linux OS with comprehensive network management software. #### RUGGEDIZATION - Fully ruggedized to withstand extreme environmental and EMI/EMP conditions. - Interfaces for power diagnostics and more. - Meets the following environmental specifications: - Operating Temperature: -40°C to 85°C while operating. - Storage Temperature: -55°C to 125°C. - Humidity: 0-100% non-condensing humidity during operation. - Vibration: 10g peak, 5-2,000 Hz sine vibration, and 40 G peak shock cycles. - Altitude: -1,500 to 60,000 ft with rapid depressurization. - EMC: Designed to comply with MIL-STD-461E. ### **ORDERING INFORMATION** #### PART NUMBER TABLE | CF-02WA00-29X | 6 channels 10GBase-T; 28 channels 1GBase-T | Managed | 75 Watts | ~60 second boot | |---------------|--|---------|----------|-----------------| | CF-02WA00-30X | 8 channels 10GBase-T; 28 channels 1GBase-T | Managed | 65 Watts | ~60 second boot | CF-02WA00-29X FRONT ISOMETRIC VIEW REAR ISOMETRIC VIEW CF-02WA00-29X | I/O CHART | | | | | | | |--------------------|-----------|-------------------|--------------------------|--|--|--| | CONNECTOR | PIN
ID | DATA
DIRECTION | SIGNAL NAME | | | | | | A | IN | 28VDC_IN | | | | | J1 | В | OUT | 28VDC_RTN | | | | | POWER
15-4P | С | | SAFETY GROUND
CHASSIS | | | | | 15 -41- | D | NOT CONNECT | | | | | | | SHELL | | CHASSIS | | | | | I/O CHART | | | | | |-----------|----------|-------------------|------------|---------------| | CONNECTOR | PIN ID | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | A-1 | | | 10GBase-T_DA+ | | | A-2 | 1 | | 10GBase-T_DA- | | | A-3 | | | 10GBase-T_DB+ | | | A-4 | BI | 1 | 10GBase-T_DB- | | | A-5 | , bi | ' ' | 10GBase-T_DC+ | | | A-6 | | | 10GBase-T_DC- | | | A-7 | | | 10GBase-T_DD+ | | | A-8 | | | 10GBase-T_DD- | | | A-OUTER | | | CHASSIS GND | | | A-CENTER | | | CHASSIS GND | | | B-1 | BI | 2 | 10GBase-T_DA+ | | | B-2 | | | 10GBase-T_DA- | | | B-3 | | | 10GBase-T_DB+ | | J2 | B-4 | | | 10GBase-T_DB- | | 10GBASE-T | B-5 | | | 10GBase-T_DC+ | | 23-6S | B-6 | | | 10GBase-T_DC- | | 2000 | B-7 | | | 10GBase-T_DD+ | | | B-8 | | | 10GBase-T_DD- | | | B-OUTER | | | CHASSIS GND | | | B-CENTER | | | CHASSIS GND | | | C -1 | | | 10GBase-T_DA+ | | | C-2 | | | 10GBase-T_DA- | | | C-3 | | | 10GBase-T_DB+ | | | C-4 | BI | 3 | 10GBase-T_DB- | | | C -5 | ы | , | 10GBase-T_DC+ | | | C-6 | | | 10GBase-T_DC- | | | C-7 | | | 10GBase-T_DD+ | | | C-8 | | | 10GBase-T_DD- | | | C -OUTER | | | CHASSIS GND | | | C-CENTER | | | CHASSIS GND | | | I/O CHART | | | | | |-----------|----------------|-------------------|------------|--------------------------------|--| | CONNECTOR | PIN ID | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | | D-1
D-2 | | | 10GBase-T_DA+
10GBase-T_DA- | | | | D-3
D-4 | | | 10GBase-T_DB+
10GBase-T_DB- | | | | D-5
D-6 | BI | 4 | 10GBase-T_DC+
10GBase-T_DC- | | | | D-7 | | | 10GBase-T_DD+ | | | | D-8
D-OUTER | | | 10GBase-T_DD-
CHASSIS GND | | | | D-CENTER | | | CHASSIS GND | | | | E-1 | | | 10GBase-T_DA+ | | | | E-2 | ВІ | | 10GBase-T_DA- | | | | E-3 | | | 10GBase-T_DB+ | | | J2 | E-4 | | 5 | 10GBase-T_DB- | | | 10GBASE-T | E-5 | | j | 10GBase-T_DC+ | | | 23-65 | E-6 | | | 10GBase-T_DC- | | | | E-7 | | | 10GBase-T_DD+ | | | | E-8 | | | 10GBase-T_DD- | | | | E-OUTER | | | CHASSIS GND | | | | E-CENTER | | | CHASSIS GND | | | | F-1 | | | 10GBase-T_DA+ | | | | F-2 | | | 10GBase-T_DA- | | | | F-3 | | | 10GBase-T_DB+ | | | | F-4 | BI | 6 | 10GBase-T_DB- | | | | F-5 | J. | | 10GBase-T_DC+ | | | | F-6 | | | 10GBase-T_DC- | | | | F-7 | | | 10GBase-T_DD+ | | | | F-8 | | | 10GBase-T_DD- | | | | F-OUTER | | | CHASSIS GND | | | | F-CENTER | | | CHASSIS GND | | | | I/O CHART | | | | | |---------------------|----------------------|-------------------|------------|---------------|--| | CONNECTOR | PIN
ID | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | | 1 | | | 1GBase-T_DA+ | | | 4 | 2 |] | | 1GBase-T_DA- | | | | 6 | | | 1GBase-T_DB+ | | | | 7 | BI | 21 | 1GBase-T_DB- | | | | 13 | В. | 21 | 1GBase-T_DC+ | | | 1 | 14 | | | 1GBase-T_DC - | | | | 15 | | | 1GBase-T_DD+ | | | | 16 | | | 1GBase-T_DD- | | | | 3 | | | 1GBase-T_DA+ | | | | 4 | | | 1GBase-T_DA- | | | - | 9 | | | 1GBase-T_DB+ | | | | 10 | BI | 22 | 1GBase-T_DB- | | | | 17 | ы | 22 | 1GBase-T_DC+ | | | | 18 | | | 1GBase-T_DC - | | | | 19 | | | 1GBase-T_DD+ | | | | 20 | | | 1GBase-T_DD- | | | J4 _ | 23 | | 23 | 1GBase-T_DA+ | | | 1GBase T
23-15IP | 24 | | | 1GBase-T_DA- | | | 23-1512 | 25 | | | 1GBase-T_DB+ | | | | 26 | ВІ | | 1GBase-T_DB- | | | | 34 | В | | 1GBase-T_DC+ | | | 1 | 35 | | | 1GBase-T_DC - | | | | 36 | | | 1GBase-T_DD+ | | | | 37 | | | 1GBase-T_DD- | | | | 28 | | | 1GBase-T_DA+ | | | | 29 | | | 1GBase-T_DA- | | | | 30 | | | 1GBase-T_DB+ | | | | 31 | BI | 24 | 1GBase-T_DB- | | | | 40 | ы | 24 | 1GBase-T_DC+ | | | | 41 | | | 1GBase-T_DC- | | | | 42 | | | 1GBase-T_DD+ | | | | 43 | | | 1GBase-T_DD- | | | _ | ALL
OTHER
PINS | | | NO CONNECT | | | I/O CHART | | | | | | |----------------|-----------|-------------------|------------|--------------|--| | CONNECTOR | PIN
ID | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | | 45 | | | 1GBase-T_DA+ | | | | 46 | 1 | | 1GBase-T_DA- | | | | 47 | BI | | 1GBase-T_DB+ | | | | 48 | | 25 | 1GBase-T_DB- | | | | 58 | 1 61 | 25 | 1GBase-T_DC+ | | | | 59 |] | | 1GBase-T_DC- | | | | 60 |] | | 1GBase-T_DD+ | | | | 61 | | | 1GBase-T_DD- | | | | 49 | | | 1GBase-T_DA+ | | | | 50 | | | 1GBase-T_DA- | | | | 52 | | | 1GBase-T_DB+ | | | | 53 | BI | 26 | 1GBase-T_DB- | | | | 62 | | 20 | 1GBase-T_DC+ | | | | 63 | | | 1GBase-T_DC- | | | | 64 | | | 1GBase-T_DD+ | | | | 65 | | | 1GBase-T_DD- | | | | 54 | ВІ | | 1GBase-T_DA+ | | | | 55 | | | 1GBase-T_DA- | | | 14 | 56 | | 22 | 1GBase-T_DB+ | | | J4
1GBase-T | 57 | | | 1GBase-T_DB- | | | 23-151P | 66 | ы | 27 | 1GBase-T_DC+ | | | 23-1311 | 67 | 1 | | 1GBase-T_DC- | | | | 68 |] | | 1GBase-T_DD+ | | | | 69 | | | 1GBase-T_DD- | | | | 83 | | | 1GBase-T_DA+ | | | | 84 | 1 | | 1GBase-T_DA- | | | | 85 | 1 | | 1GBase-T_DB+ | | | | 86 | ВІ | 28 | 1GBase-T_DB- | | | | 95 | В | 20 | 1GBase-T_DC+ | | | | 96 | 1 | | 1GBase-T_DC- | | | | 97 | 1 | | 1GBase-T_DD+ | | | | 98 |] | | 1GBase-T_DD- | | | | 87 | | | 1GBase-T_DA+ | | | | 88 | 1 | | 1GBase-T_DA- | | | | 89 | 1 | | 1GBase-T_DB+ | | | | 90 | D. | 20 | 1GBase-T_DB- | | | | 99 | BI | 29 | 1GBase-T_DC+ | | | | 100 | 1 | | 1GBase-T_DC- | | | | 102 | 1 | | 1GBase-T_DD+ | | | | 103 | 1 | | 1GBase-T_DD- | | | I/O CHART | | | | | | | |---------------------|-----------|-------------------|------------|--------------|--|--| | CONNECTOR | PIN
ID | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | | | 91 | | | 1GBase-T_DA+ | | | | | 92 | | | 1GBase-T_DA- | | | | | 93 | | | 1GBase-T_DB+ | | | | | 94 | ВІ | 30 | 1GBase-T_DB- | | | | | 104 | | 30 | 1GBase-T_DC+ | | | | | 105 |] | | 1GBase-T_DC- | | | | | 106 |] | | 1GBase-T_DD+ | | | | | 107 | | | 1GBase-T_DD- | | | | | 109 |] | | 1GBase-T_DA+ | | | | | 110 | | | 1GBase-T_DA- | | | | | 111 |] | | 1GBase-T_DB+ | | | | | 112 | ВІ | 31 | 1GBase-T_DB- | | | | | 121 | D1 | 31 | 1GBase-T_DC+ | | | | | 122 | | | 1GBase-T_DC- | | | | | 123 | | | 1GBase-T_DD+ | | | | | 124 | | | 1GBase-T_DD- | | | | | 115 | | 32 | 1GBase-T_DA+ | | | | | 116 | | | 1GBase-T_DA- | | | | | 117 | | | 1GBase-T_DB+ | | | | J4 | 118 | | | 1GBase-T_DB- | | | | 1GBase-T
23-151P | 126 | BI | | 1GBase-T_DC+ | | | | 23-13IF | 127 | 1 | | 1GBase-T_DC- | | | | | 128 | 1 | | 1GBase-T_DD+ | | | | | 129 | 1 | | 1GBase-T_DD- | | | | | 132 | | | 1GBase-T_DA+ | | | | | 133 | 1 | | 1GBase-T_DA- | | | | | 134 | 1 | | 1GBase-T_DB+ | | | | | 135 |] | 33 | 1GBase-T_DB- | | | | | 142 | BI | | 1GBase-T_DC+ | | | | | 143 | 1 | | 1GBase-T_DC- | | | | | 148 | 1 | | 1GBase-T_DD+ | | | | | 149 | 1 | | 1GBase-T_DD- | | | | | 136 | | | 1GBase-T_DA+ | | | | | 137 | 1 | | 1GBase-T_DA- | | | | | 138 | 1 | | 1GBase-T_DB+ | | | | | 139 | 1 | 3, | 1GBase-T_DB- | | | | | 145 | BI | 34 | 1GBase-T_DC+ | | | | | 146 | 1 | | 1GBase-T_DC- | | | | | 150 | 1 | | 1GBase-T_DD+ | | | | | 151 | 1 | | 1GBase-T_DD- | | | CF-02WA00-30X FRONT ISOMETRIC VIEW REAR ISOMETRIC VIEW ## CF-02WA00-30X | I/O CHART | | | | | | | |-------------------|-----------|-------------------|--------------------------|--|--|--| | CONNECTOR | PIN
ID | DATA
DIRECTION | SIGNAL NAME | | | | | | A | IN | 28VDC_IN | | | | | JI | В | OUT | 28VDC_RTN | | | | | POWER | С | | SAFETY GROUND
CHASSIS | | | | | 15 -4P | D | | NOT CONNECTED | | | | | | SHELL | | CHASSIS | | | | | | I/O CHART | | | | | |-----------|-----------|-------------------|------------|---------------|--| | CONNECTOR | PIN ID | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | | A-1 | | | 10GBase-T_DA+ | | | | A-2 | | | 10GBase-T_DA- | | | | A-3 | | | 10GBase-T_DB+ | | | | A-4 | BI | 1 | 10GBase-T_DB- | | | | A-5 | | | 10GBase-T_DC+ | | | | A-6 | | | 10GBase-T_DC- | | | | A-7 | | | 10GBase-T_DD+ | | | | A-8 | | | 10GBase-T_DD- | | | | A-OUTER | | | CHASSIS GND | | | | A-CENTER | | | CHASSIS GND | | | | B-1 | | | 10GBase-T_DA+ | | | | B-2 | | | 10GBase-T_DA- | | | | B-3 | | | 10GBase-T_DB+ | | | | B-4 | ВІ | 2 | 10GBase-T_DB- | | | | B-5 | | | 10GBase-T_DC+ | | | | B-6 | | | 10GBase-T_DC- | | | | B-7 |] | | 10GBase-T_DD+ | | | | B-8 | | | 10GBase-T_DD- | | | J2 | B-OUTER | | | CHASSIS GND | | | 10GBASE-T | B-CENTER | | | CHASSIS GND | | | 25-8S | C -1 | | | 10GBase-T_DA+ | | | 20 00 | C-2 | | | 10GBase-T_DA- | | | | C-3 | | | 10GBase-T_DB+ | | | | C-4 | ВІ | 3 | 10GBase-T_DB- | | | | C –5 | ы | , | 10GBase-T_DC+ | | | | C-6 | | | 10GBase-T_DC- | | | | C-7 | | | 10GBase-T_DD+ | | | | C-8 | 1 | | 10GBase-T_DD- | | | | C -OUTER | | | CHASSIS GND | | | | C-CENTER | | | CHASSIS GND | | | | D-1 | | | 10GBase-T_DA+ | | | | D-2 | | | 10GBase-T_DA- | | | | D-3 | | | 10GBase-T_DB+ | | | | D-4 | D.I | , | 10GBase-T_DB- | | | | D-5 | BI | 4 | 10GBase-T_DC+ | | | | D-6 | | | 10GBase-T_DC- | | | | D-7 | 1 | | 10GBase-T_DD+ | | | | D-8 | | | 10GBase-T_DD- | | | | D-OUTER | | | CHASSIS GND | | | | D-CENTER | | | CHASSIS GND | | | | | | | _ | | | I/O CHART | | | | | | | |----------------|----------------------|-------------------|------------|---------------|--|--| | CONNECTOR | PIN
ID | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | | | 1 | | | 1GBase-T_DA+ | | | | | 2 | | | 1GBase-T_DA- | | | | | 6 | | | 1GBase-T_DB+ | | | | | 7 | BI | 9 | 1GBase-T_DB- | | | | | 13 | ы | , | 1GBase-T_DC+ | | | | | 14 | | | 1GBase=T_DC = | | | | | 15 | | | 1GBase-T_DD+ | | | | | 16 | | | 1GBase-T_DD- | | | | | 3 | | | 1GBase-T_DA+ | | | | | 4 | | | 1GBase-T_DA- | | | | | 9 | | | 1GBase-T_DB+ | | | | | 10 | ВІ | 10 | 1GBase-T_DB- | | | | | 17 | | | 1GBase-T_DC+ | | | | | 18 | | | 1GBase-T_DC- | | | | | 19 | | | 1GBase-T_DD+ | | | | | 20 | | | 1GBase-T_DD- | | | | J3 | 23 | | | 1GBase-T_DA+ | | | | 1GBase-T | 24 | | | 1GBase-T_DA- | | | | 23-15 P | 25 | | | 1GBase-T_DB+ | | | | | 26 | | | 1GBase-T_DB- | | | | | 34 | BI | 11 | 1GBase-T_DC+ | | | | | 35 | | | 1GBase-T_DC- | | | | | 36 | | | 1GBase-T_DD+ | | | | | 37 | | | 1GBase-T_DD- | | | | | 28 | | | 1GBase-T_DA+ | | | | | 29 | | | 1GBase-T_DA- | | | | | 30 | | | 1GBase-T_DB+ | | | | | 31 | | | 1GBase-T_DB- | | | | | 40 | BI | 12 | 1GBase-T_DC+ | | | | | 41 | | | 1GBase-T_DC- | | | | | 42 | | | 1GBase-T_DD+ | | | | | 43 | | | 1GBase-T_DD- | | | | | ALL
OTHER
PINS | | | NO CONNECT | | | | I/O CHART | | | | | |-----------|-----|-------|------------|---------------| | CONNECTOR | PIN | DATA | PORT
NO | SIGNAL NAME | | | 45 | | | 1GBase-T_DA+ | | | 46 |] | | 1GBase-T_DA- | | | 47 | BI | | 1GBase-T_DB+ | | | 48 | | 13 | 1GBase-T_DB- | | | 58 |] " | 13 | 1GBase-T_DC+ | | | 59 | | | 1GBase-T_DC- | | | 60 | | | 1GBase-T_DD+ | | | 61 | | | 1GBase-T_DD- | | | 49 | | | 1GBase-T_DA+ | | | 50 | | | 1GBase-T_DA- | | | 52 | | | 1GBase-T_DB+ | | | 53 | ВІ | 14 | 1GBase-T_DB- | | | 62 |] " | 174 | 1GBase-T_DC+ | | | 63 | | | 1GBase-T_DC- | | | 64 | | | 1GBase-T_DD+ | | | 65 | | | 1GBase-T_DD- | | | 54 | BI | 15 | 1GBase-T_DA+ | | | 55 | | | 1GBase-T_DA- | | J3 | 56 | | | 16Base-T_DB+ | | 1GBase-T | 57 | | | 1GBase-T_DB- | | 23-151P | 66 | D1 | | 1GBase-T_DC+ | | 25-1511 | 67 | 1 | | 1GBase-T_DC - | | | 68 |] | | 1GBase-T_DD+ | | | 69 | 1 | | 1GBase-T_DD- | | | 83 | | | 1GBase-T_DA+ | | | 84 | 1 | | 1GBase-T_DA- | | | 85 |] | | 1GBase-T_DB+ | | | 86 | BI | 16 | 1GBase-T_DB- | | | 95 | 1 81 | ID | 1GBase=T_DC+ | | | 96 | 1 | | 1GBase-T_DC- | | | 97 | 1 | | 1GBase-T_DD+ | | | 98 | | | 1GBase-T_DD- | | | 87 | | | 1GBase-T_DA+ | | | 88 | 1 | | 1GBase-T_DA- | | | 89 | 1 | | 1GBase-T_DB+ | | | 90 | BI BI | 17 | 1GBase-T_DB- | | | 99 |] 81 | 17 | 1GBase-T_DC+ | | | 100 | 1 | | 1GBase-T_DC- | | | 102 | 1 | | 1GBase-T_DD+ | | | 103 | 1 | | 1GBase-T_DD- | | I/O CHART | | | | | |-----------|----------|------|------------|---------------| | CONNECTOR | PIN ID | DATA | PORT
NO | SIGNAL NAME | | | E-1 | | | 10GBase-T_DA+ | | | E-2 | | | 10GBase-T_DA- | | | E-3 | | | 10GBase-T_DB+ | | | E-4 | BI | 5 | 10GBase-T_DB- | | | E-5 | | , | 10GBase-T_DC+ | | | E-6 | | | 10GBase-T_DC- | | | E-7 | | | 10GBase-T_DD+ | | | E-8 | | | 10GBase-T_DD- | | | E-OUTER | | | CHASSIS GND | | | E-CENTER | | | CHASSIS GND | | | F-1 | | | 10GBase-T_DA+ | | | F-2 |] | | 10GBase-T_DA- | | | F-3 | | | 10GBase-T_DB+ | | | F-4 | ВІ | 6 | 10GBase-T_DB- | | | F-5 | | | 10GBase-T_DC+ | | | F-6 | | | 10GBase-T_DC- | | | F-7 | | | 10GBase-T_DD+ | | J2 | F-8 | | | 10GBase-T_DD- | | | F-OUTER | | | CHASSIS GND | | 10GBASE-T | F-CENTER | | | CHASSIS GND | | 25-8S | G-1 | | | 10GBase-T_DA+ | | 20 00 | G-2 | | | 10GBase-T_DA- | | | G-3 | | | 10GBase-T_DB+ | | | G-4 | BI | 7 | 10GBase-T_DB- | | | G-5 | 0. | , | 10GBase-T_DC+ | | | G-6 | | | 10GBase-T_DC- | | | G-7 | | | 10GBase-T_DD+ | | | G-8 | | | 10GBase-T_DD- | | | G-OUTER | | | CHASSIS GND | | | G-CENTER | | | CHASSIS GND | | | H-1 | | | 10GBase-T_DA+ | | | H-2 | | | 10GBase-T_DA- | | | H-3 | | | 10GBase-T_DB+ | | | H-4 | BI | 8 | 10GBase-T_DB- | | | H-5 | | | 10GBase-T_DC+ | | | H-6 |] | | 10GBase-T_DC- | | | H-7 |] | | 10GBase-T_DD+ | | | H-8 | | | 10GBase-T_DD- | | | H-OUTER | | | CHASSIS GND | | | H-CENTER | | | CHASSIS GND | | | | I/O CHA | | | |-----------|-----|-------------------|------------|--------------| | CONNECTOR | PIN | DATA
DIRECTION | PORT
NO | SIGNAL NAME | | | 91 | BI | | 1GBase-T_DA+ | | | 92 | | | 1GBase-T_DA- | | | 93 | | | 1GBase-T_DB+ | | | 94 | | 18 | 1GBase-T_DB- | | | 104 | | | 1GBase-T_DC+ | | | 105 | | | 1GBase-T_DC- | | | 106 | | | 1GBase-T_DD+ | | | 107 | | | 1GBase-T_DD- | | | 109 | | | 1GBase-T_DA+ | | | 110 | | | 1GBase-T_DA- | | | 111 | | | 1GBase-T_DB+ | | | 112 | ВІ | 19 | 1GBase-T_DB- | | | 121 | BI | 19 | 1GBase-T_DC+ | | | 122 | | | 1GBase-T_DC- | | | 123 | | | 1GBase-T_DD+ | | | 124 | | | 1GBase-T_DD- | | | 115 | | | 1GBase-T_DA+ | | | 116 | | | 1GBase-T_DA- | | .13 | 117 | | | 1GBase-T_DB+ | | 1GBase-T | 118 | ВІ | 20 | 1GBase-T_DB- | | 23-15IP | 126 | B1 | 20 | 1GBase-T_DC+ | | 20 1011 | 127 | | | 1GBase-T_DC- | | | 128 | | | 1GBase-T_DD+ | | | 129 | | | 1GBase-T_DD- | | | 132 | | 21 | 1GBase-T_DA+ | | | 133 | | | 1GBase-T_DA- | | | 134 | BI | | 1GBase-T_DB+ | | | 135 | | | 1GBase-T_DB- | | | 142 | | | 1GBase-T_DC+ | | | 143 | | | 1GBase-T_DC- | | | 148 | | | 1GBase-T_DD+ | | | 149 | | | 1GBase-T_DD- | | | 136 | | | 1GBase-T_DA+ | | | 137 | | | 1GBase-T_DA- | | | 138 |] | | 1GBase-T_DB+ | | | 139 | ВІ | 22 | 1GBase-T_DB- | | | 145 | | | 1GBase-T_DC+ | | | 146 | | | 1GBase-T_DC- | | | 150 | | | 1GBase-T_DD+ | | | 151 | | | 1GBase-T_DD- | ## **QUALIFICATION STANDARDS** | Parameter | Detail | Requirement | Test Method | |---|---|---|--| | Low Pressure
(Altitude) | Storage | Sea level to 50,000 ft @ -
57°C | MIL-STD-810G Method 500.5
Procedure I | | | Operational | Sea level to 40,000 ft @ -
54°C | MIL-STD-810G Method 500.5
Procedure II | | | Explosive Decompression | 8,000 ft to 23,100 feet in
8ms | MIL-STD-810G Method 500.5
Procedure IV | | High
Temperature
extremes | Storage, cyclic | +95°C | MIL-STD-810G Method 501.5
Procedure I | | | Operational, cyclic | +55°C | MIL-STD-810G Method 501.5
Procedure II | | | Operational, constant | +71°C for 30 Minutes | MIL-STD-810G Method 501.5
Procedure II | | Low
Temperature
extremes | Storage, cyclic | -57°C | MIL-STD-810G Method 502.5
Procedure I | | | Operational, cyclic | -40°C | MIL-STD-810G Method 502.5
Procedure II | | | Operational, sea level, constant | -65°C for 120 Minutes | MIL-STD-810G Method 502.5
Procedure II, as per F-16 | | Temperature | Shock, from constant | -54°C to +71°C at
125°C/Minute | MIL-STD-810G Method 503.5
Procedure I-B | | Combined
temperature-
altitude-humidity | Operational, 10 cycles | -40°C to +71°C, Sea level
to 60,000 ft | MIL-STD-810G Method 520.3
Procedure III | | Humidity | Operational and
Non-Operational,
aggravated cycle | 95% ± 4% Humidity,
+30°C to +60°C,
10 cycles | MIL-STD-810F Method 507.5
Procedure II | | Sand and Dust | Operational and
Non-Operational,
blowing | < 150um dust,
150um to 850um sand | MIL-STD-810G Method 510.5
Procedure I (Dust)
Procedure II (Sand) | | Rain | Operational, Dripping | 7 gal/ft2/hr, 40 mph for
30 minutes | MIL-STD-810G Method 506.5
Procedure III | | Fungus | Non-Operational | 7-day growth | MIL-STD-810G Method 508.6 | | Salt Fog | Operational and
Non-Operational,
exposure | Four 24-hour wet/dry
cycles | MIL-STD-810G Method 509.5 | | Explosive
Atmosphere | Operational | At site and 40,000 ft
altitudes | MIL-STD-810G Method 511.5
Procedure I | | Acceleration,
structural | Limit Loads | Performance at ±10.0g
applied individually along
all 3 axes | MIL-STD-810G Method 513.6
Procedure I | ## **QUALIFICATION STANDARDS CONT.** | | | west a last a | | |-----------------------------|--|--|---| | | Ultimate Loads | Withstand without
structural failure ±15.0g
applied individually along
all 3 axes | MIL-STD-810F Method 513.6
Procedure II | | | Crash Landing | Remain captive, 40g fore,
20g aft and down, 10g up,
18g left and right | MIL-STD-810F Method 513.6
Procedure III | | Shock –
Functional | Operational | 20g, 11ms nominal, 3
blows each direction,
each axis (18 total),
terminal peak sawtooth | MIL-STD-810G Method 516.6
Procedure I | | Shock – Crash
Hazard | Non-Operational | 40g, 11ms nominal, 2
blows each direction,
each axis (12 total) | MIL-STD-810G Method 516.6,
Procedure V | | Shock – Bench
Handling | Non-Operational | 4" drop, 1 drop per edge
per face (24 total) | MIL-STD-810G Method 516.6,
Procedure VI | | Vibration | Operational,
Performance, Jet aircraft | 30 mins, 0.02 g2/Hz to
0.04 g2/Hz, 15 - 2000 Hz,
Overall 4.4Grms | MIL-STD-810G Method 514.6,
Procedure I, Category 12,
Annex D, Fig 514.6D-I | | | Non-Operational,
Endurance, Jet aircraft | 60 mins, 0.04 g2/Hz to
0.06 g2/Hz, 15 - 2000 Hz,
Overall 9.2Grms | MIL-STD-810G Method 514.6,
Procedure I, Category 12,
Annex D, Fig 514.6D-I | | | Operational, Gunfire
Shock | 7.5 min sweeps, 5 to 15 g,
66 to 856 Hz | MIL-STD-810G Method 519.6,
Procedure III | | | Operational, UH-60 Main
Rotor speeds and blade
numbers | 4 hours, 0.001g2/Hz to
0.01g2/Hz, 3 to 500 Hz | MIL-STD-810G Method 514.6,
Procedure I, Category 14, Annex A
& Annex D,
Table 514.6D-III | | Acoustic Noise | Operational | 30 mins, 140 dB overall,
50 to 10000 Hz | MIL-STD-810G Method 515.6
Procedure I | | Conducted
Emissions | Operational | Power Leads, 30 Hz to 10
kHz | MIL-STD-461G CE101
Par 5.4, CE101-4 Curve #2 | | | Operational | Power Leads, 10 kHz to
10MHz | MIL-STD-461G CE102
Par 5.5, Fig CE102-1 Basic Curve | | Conducted
Susceptibility | Operational | Power leads, 30Hz to 150
kHz | MIL-STD-461G CS101
Par 5.7, Fig CS101-1 Curve #2 | | | Operational | Bulk cable injection, 10
kHz to 200MHz | MIL-STD-461G CS114
Par 5.12, Fig CS114-1 Curve #5 | | | Operational | Bulk cable injection,
impulse excitation, 30Hz
for one minute | MIL-STD-461G CS115
Par 5.13, Fig CS115-1 | ## **QUALIFICATION STANDARDS CONT.** | | Operational | Damped sinusoidal
transients, cables and
power leads, 10kHz to
100MHz, 5 minutes | MIL-STD-461G CS116
Par 5.14, Fig CS116-1 and CS116-2 | |----------------------------|----------------------------------|---|---| | Radiated
Emissions | Operational | Magnetic field, 30Hz to
100kHz | MIL-STD-461G RE101
Par 5.17, Fig RE101-1 and Fig
RE101-2 | | | Operational | Electric field, 10kHz to
18GHz | MIL-STD-461G RE102
Par 5.18, Fig RE102-3 Fixed wing
external and Fixed wing internal <
25m | | Radiated
Susceptibility | Operational | Magnetic field, 30 Hz to
100 kHz | MIL-STD-461G RS101
Par 5.20 Fig RS101-2 Army | | | Operational | Electric field, 2 MHz to 18
GHz | MIL-STD-461G RS103
Par 5.21, Table XI, Aircraft Internal
Army | | Power Supply | Operational, normal condition | Load measurements, ask for info | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-101 | | | Operational, normal condition | Steady state limits, 22 Vdc
to 29 Vdc | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-102
Tests A, B, C | | | Operational, normal condition | Voltage distortion spectrum | MIL-STD-704F Chg1 Fig 15
MIL-HDBK-704-8 LDC-103
Tests A thru K | | | Operational, normal condition | Total ripple | MIL-STD-704F Chg1 Fig 15
MIL-HDBK-704-8 LDC-104,
Table LDC104-II | | | Operational, normal condition | Normal voltage
transients, 18Vdc to
29Vdc | MIL-STD-704F Chg1 Fig 13
MIL-HDBK-704-8 LDC-105
Tests AA thru RR | | | Operational, transfer interrupt | Power interrupt, 50ms,
22Vdc to 29Vdc | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-201 | | | Operational, abnormal condition | Steady state limits, 20.0
Vdc and 31.5Vdc, 30
minutes | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-301
Tests A and B | | | Operational, abnormal condition | Abnormal voltage
transients, abnormal
condition | MIL-STD-704F Chg1 Fig 14
MIL-HDBK-704-8 LDC-302,
Tests AAA thru NNN, 7 to 50V | | | Operational, emergency condition | Steady state limits, 18 Vdc
to 29 Vdc | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-401 | ## **QUALIFICATION STANDARDS CONT.** | Power Supply
(cont.) | Operational, starting | Starting voltage
transients, 12 Vdc to
29 Vdc | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-501,
Table LDC501-IV | |-------------------------|---|--|---| | | Operational, power failure and automatic recovery | Power failure, from
100ms to 7 seconds | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-601
Tests A thru D | | | Operational, power failure | Phase reversal protection/ prevention | MIL-STD-704F Chg1
MIL-HDBK-704-8 LDC-602 | | Chassis Grounding | Operating | Allow for proper
electrical bonding
through designated
external stub and
dedicated pins on
connectors | SAE-AS-50881H | | Electrical Bonding | Operating | Primary Chassis
ground connection
for electrical
bonding provided by
designated external
stub | MIL-STD-464C, Paragraph 5.11.3 | | Mounting | For vibration tolerance | 4x 10-32 captive
screws | | Notice: Specifications are subject to change without notice. Contact your nearest Amphenol Corporation Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all connectors. AMPHENOL is a registered trademark of Amphenol Corporation. ©2023 Amphenol Corporation REV: PRELIMINARY 40-60 Delaware Avenue Sidney, NY 13838 amphenol-aerospace.com | amphenolmao.com