

34-CHANNEL 10G COPPER RUGGED ETHERNET SWITCH

10/100/1G/2.5G/5G/10G Base-T Compatibility

Miracle Switch

PRODUCT HIGHLIGHTS

- Boot time is less than 10 seconds
- Power consumption is less than 50 watts
- Lightly managed switching functionality
- Source code available for 3rd party applications
- Secure and rugged for the harshest environments

DESCRIPTION

Amphenol's 34-channel Rugged Ethernet Switchbox is conduction cooled and configurable for system connectivity, various speeds, port types, as well as interoperation with several high-speed media converters and cable assemblies for system interfacing.

28 ports are capable of 10/100/1G Base-T compatibility, and 6 ports are capable of 10/100/1G/2.5G/5G/10G Base-T compatibility. In Amphenol's state of the art communications testing center, the switchbox is aggressively tested at line rates to RFC 2889 for switch and RFC 2544 for L2/L3 performance, latency, packet forwarding and other key items.

The switch is manufactured using derivates of Amphenol's MIL-DTL-38999 Series III connectors. These connectors contain standard AS39029 qualified Size 22D contacts and Octonet contacts. Amphenol's Octonet contacts are a proven design used in a variety of military programs. The Octonet is a Size 8 contact that houses four differential pairs, capable of a data rate of 4Gbps maximum and 1000hm impedance. This contact system has been tested and passed all specification requirements of AS39029 qualification.

FEATURES & BENEFITS

- 28 ports are capable of 10/100/1G Base-T compatibility
- 6 ports are capable of 10/100/1G/2.5G/5G/10G Base-T compatibility
- 28V MIL-STD-740A input module see this specification for input power considerations.
- 50 watts or less typical power consumption
- Less than 10 second boot time from power on to traffic switching.
- Mil-spec power supply with hold-up capacitor and in-rush current limiting circuit
- Built in test functionality for power up, initiated, and continuous operation.
- MIL-DTL-38999 power, debug/maintenance, and data connectors
- Mil-spec black painted chassis with cold plate external conduction cooling
- Host management process with expanded Ethernet features including:
 - o CLI interface and web interface
 - o IPV4 / IPV6 routing
 - o Information on links and port counters
 - o Tagged and untagged vlan configurations
 - o Trunk link aggregation
 - o Port mirroring
 - o Port based QoS
 - o 802.1P QoS
 - o Rate limitations
 - o Loop detection
 - o Multicast IGMP snooping

- o Reset functionality with authenticated Ethernet command
- o CNSA 1.0 algorithms
- o Secure Methods for logging into switch over management Ethernet
- o Approved zeroization methods
- o Denial of service protections
- o Firewall functionality
- o Secure booting
- o Cable diagnostics
- o Access control

ORDERING INFORMATION

PART NUMBER

CF-02WA00-19X

DIMENSIONAL INFORMATION

DIMENSIONAL INFORMATION

I/O CHART

I/O CHART				
CONNECTOR	PIN ID	DATA DIRECTION	SIGNAL NAME	
	A	IN	28VDC_IN	
JI POWER 15-4P	В	OUT	28VDC_RTN	
	C		SAFETY GROUND CHASSIS	
	D		NOT CONNECTED	
	SHELL		CHASSIS	

I/O CHART				
CONNECTOR	PIN ID	DATA	PORT NO	SIGNAL NAME
	A-1			10GBase-T_DA+
	A-2]		10GBase-T_DA-
	A-3]		10GBase-T_DB+
	A-4	ВІ	1	10GBase-T_DB-
	A-5] b'	l '	10GBase-T_DC+
	A-6]		10GBase-T_DC-
	A-7	1		10GBase-T_DD+
	A-8	1		10GBase-T_DD-
	A-OUTER			CHASSIS
	A-CENTER			CHASSIS
	B-1			10GBase-T_DA+
	B-2	1		10GBase-T_DA-
	B-3	BI		10GBase-T_DB+
	B-4		2	10GBase-T_DB-
J2 10GBASE-T	B-5		2	10GBase-T_DC+
23-65	B-6	1		10GBase-T_DC-
23-03	B-7	1		10GBase-T_DD+
	B-8	1		10GBase-T_DD-
	B-OUTER			CHASSIS
	B-CENTER			CHASSIS
	C-1			10GBase-T_DA+
	C-2	1		10GBase-T_DA-
	C-3	1		10GBase-T_DB+
	C-4	ВІ	3	10GBase-T_DB-
	(-5] BI	,	10GBase-T_DC+
	£-6]		10GBase-T_DC-
	C-7]		10GBase-T_DD+
	6-3	1		10GBase-T_DD-
	C-OUTER			CHASSIS
	C-CENTER			CHASSIS

I/O CHART				
CONNECTOR	PIN ID	DATA	PORT	SIGNAL NAME
	D-1			10GBase-T_DA+
	D-2			10GBase-T_DA-
	D-3	1		10GBase-T_DB+
	D-4	ВІ	4	10GBase-T_DB-
	D-5	1 81	*	10GBase-T_DC+
	D-6	1		10GBase=T_DC=
	D-7	1		10GBase-T_DD+
	D-8	1		10GBase-T_DD-
	D-OUTER			CHASSIS
	D-CENTER			CHASSIS
	E-1			10GBase-T_DA+
	E-2	1		10GBase-T_DA-
	E-3	1		10GBase=T_DB+
10	E-4	ВІ	5	10GBase-T_DB-
J2 10GBASE-T	E-5	1 61	2	10GBase=T_DC+
23-6S	E-6]		10GBase=T_DC=
25 05	E-7			10GBase-T_DD+
	E-8			10GBase-T_DD-
	E-OUTER			CHASSIS
	E-CENTER			CHASSIS
	F-1			10GBase=T_DA+
	F-2			10GBase-T_DA-
	F-3			10GBase-T_DB+
	F-4	ВІ	6	10GBase-T_DB-
	F-5] "	0	10GBase-T_DC+
	F-6			10GBase-T_DC-
	F-7			10GBase-T_DD+
	F-8	1		10GBase-T_DD-
	F-OUTER			CHASSIS
	F-CENTER			CHASSIS

I/O CHART CONNECTOR PIN DATA PORT SIGNAL NAME					
UNINECTUR	ID	DIRECTION	NO	SIGNAL NAME	
	1			1GBase-T_DA+	
	2			1GBase-T_DA-	
	6			1GBase-T_DB+	
	7	ВІ	21	1GBase-T_DB-	
	13	D'	21	1GBase-T_DC+	
	14			1GBase-T_DC-	
	15]		1GBase-T_DD+	
	16			1GBase-T_DD-	
	3			1GBase-T_DA+	
	4]		1GBase-T_DA-	
	9			1GBase-T_DB+	
	10	ВІ	22	1GBase-T_DB-	
	17	ы	22	1GBase-T_DC+	
	18	1		1GBase-T_DC-	
	19			1GBase-T_DD+	
	20			1GBase-T_DD-	
J4	23			1GBase-T_DA+	
1GBase-T	24	1		1GBase-T_DA-	
23-15 P	25]		1GBase=T_DB+	
	26	ВІ	23	1GBase-T_DB-	
	34	В	23	1GBase-T_DC+	
	35	1		1GBase-T_DC-	
	36	1		1GBase-T_DD+	
	37	1		1GBase-T_DD-	
	28			1GBase-T_DA+	
	29	1		1GBase-T_DA-	
	30	1		1GBase-T_DB+	
	31	1	24	1GBase-T_DB-	
	40	BI	24	1GBase-T_DC+	
	41	1		1GBase-T_DC-	
	42	1		1GBase-T_DD+	
	43	1		1GBase-T_DD-	
	ALL OTHER PINS			NO CONNECT	

I/O CHART				
CONNECTOR	PIN	DATA DIRECTION	PORT NO	SIGNAL NAME
	45	D		1GBase-T_DA+
	46	1		1GBase-T_DA-
	47	1		1GBase=T_DB+
	48	ВІ	25	1GBase-T_DB-
	58] bi	23	1GBase-T_DC+
	59]		1GBase-T_DC-
	60]		1GBase-T_DD+
	61			1GBase-T_DD-
	49			1GBase-T_DA+
	50]		1GBase-T_DA-
	52			1GBase-T_DB+
	53	BI	26	1GBase-T_DB-
	62] "	20	1GBase-T_DC +
	63]		1GBase-T_DC-
	64]		1GBase-T_DD+
	65			1GBase-T_DD-
	54	ВІ		1GBase-T_DA+
	55			1GBase-T_DA-
J4	56			1GBase=T_DB+
1GBase-T	57		27	1GBase-T_DB-
23-151P	66] "	2,	1GBase-T_DC+
20 1011	67]		1GBase-T_DC-
	68			1GBase-T_DD+
	69			1GBase-T_DD-
	83			1GBase-T_DA+
	84			1GBase-T_DA-
	85			1GBase-T_DB+
	86	ВІ	28	1GBase-T_DB-
	95		20	1GBase-T_DC+
	96]		1GBase-T_DC-
	97			1GBase-T_DD+
	98			1GBase-T_DD-
	87			1GBase-T_DA+
	88]		1GBase-T_DA-
	89	1		1GBase=T_DB+
	90	ВІ	29	1GBase-T_DB-
	99] "	2.7	1GBase-T_DC+
	100]		1GBase-T_DC-
	102			1GBase-T_DD+
	103			1GBase-T_DD-

I/O CHART				
CONNECTOR	PIN ID	DATA DIRECTION	PORT NO	SIGNAL NAME
	91 92 93 94 104 105 106 107 109 110 111 112	BI BI	30	16Base-T_DA+ 16Base-T_DB+ 16Base-T_DB+ 16Base-T_DC+ 16Base-T_DC+ 16Base-T_DC+ 16Base-T_DO- 16Base-T_DA+ 16Base-T_DA+ 16Base-T_DA+ 16Base-T_DB+ 16Base-T_DB+ 16Base-T_DB+
J4 168ase-T 23-151P	122 123 124 115 116 117 118 126 127 128	BI	32	16Base-T_D(- 16Base-T_DD+ 16Base-T_DD- 16Base-T_DA- 16Base-T_DA- 16Base-T_DB- 16Base-T_DC+ 16Base-T_DC+ 16Base-T_DC- 16Base-T_DC- 16Base-T_DC- 16Base-T_DC-
	132 133 134 135 142 143 148	BI	33	16Base-T_DA+ 16Base-T_DB+ 16Base-T_DB+ 16Base-T_DC- 16Base-T_DC- 16Base-T_DC- 16Base-T_DC- 16Base-T_DC-
	136 137 138 139 145 146 150	ВІ	34	16Base-T_DA+ 16Base-T_DB+ 16Base-T_DB- 16Base-T_DC- 16Base-T_DC- 16Base-T_DC- 16Base-T_DC-

SEE SHEET 2

QUALIFICATION STANDARDS

Parameter	Detail	Requirement	Test Method
	Storage	Sea level to 50,000 ft @ - 57°C	MIL-STD-810G Method 500.5 Procedure I
Low Pressure (Altitude)	Operational	Sea level to 40,000 ft @ - 54°C	MIL-STD-810G Method 500.5 Procedure II
	Explosive Decompression	8,000 ft to 23,100 feet in 8ms	MIL-STD-810G Method 500.5 Procedure IV
	Storage, cyclic	+95°C	MIL-STD-810G Method 501.5 Procedure I
High Temperature extremes	Operational, cyclic	+55°C	MIL-STD-810G Method 501.5 Procedure II
CALICINES	Operational, constant	+71°C for 30 Minutes	MIL-STD-810G Method 501.5 Procedure II
	Storage, cyclic	-57°C	MIL-STD-810G Method 502.5 Procedure I
Low Temperature extremes	Operational, cyclic	-40°C	MIL-STD-810G Method 502.5 Procedure II
extremes	Operational, sea level, constant	-65°C for 120 Minutes	MIL-STD-810G Method 502.5 Procedure II, as per F-16
Temperature	Shock, from constant	-54°C to +71°C at 125°C/Minute	MIL-STD-810G Method 503.5 Procedure I-B
Combined temperature-altitude-humidity	Operational, 10 cycles	-40°C to +71°C, Sea level to 60,000 ft	MIL-STD-810G Method 520.3 Procedure III
Humidity	Operational and Non-Operational, aggravated cycle	95% ± 4% Humidity, +30°C to +60°C, 10 cycles	MIL-STD-810F Method 507.5 Procedure II
Sand and Dust	Operational and Non-Operational, blowing	< 150um dust, 150um to 850um sand	MIL-STD-810G Method 510.5 Procedure I (Dust) Procedure II (Sand)
Rain	Operational, Dripping	7 gal/ft2/hr, 40 mph for 30 minutes	MIL-STD-810G Method 506.5 Procedure III
Fungus	Non-Operational	7-day growth	MIL-STD-810G Method 508.6
Salt Fog	Operational and Non-Operational, exposure	Four 24-hour wet/dry cycles	MIL-STD-810G Method 509.5
Explosive Atmosphere	Operational	At site and 40,000 ft altitudes	MIL-STD-810G Method 511.5 Procedure I
Acceleration, structural	Limit Loads	Performance at ±10.0g applied individually along all 3 axes	MIL-STD-810G Method 513.6 Procedure I

QUALIFICATION STANDARDS CONT.

	Ultimate Loads	Withstand without structural failure ±15.0g applied individually along all 3 axes	MIL-STD-810F Method 513.6 Procedure II
	Crash Landing	Remain captive, 40g fore, 20g aft and down, 10g up, 18g left and right	MIL-STD-810F Method 513.6 Procedure III
Shock – Functional	Operational	20g, 11ms nominal, 3 blows each direction, each axis (18 total), terminal peak sawtooth	MIL-STD-810G Method 516.6 Procedure I
Shock – Crash Hazard	Non-Operational	40g, 11ms nominal, 2 blows each direction, each axis (12 total)	MIL-STD-810G Method 516.6, Procedure V
Shock – Bench Handling	Non-Operational	4" drop, 1 drop per edge per face (24 total)	MIL-STD-810G Method 516.6, Procedure VI
	Operational, Performance, Jet aircraft	30 mins, 0.02 g2/Hz to 0.04 g2/Hz, 15 - 2000 Hz, Overall 4.4Grms	MIL-STD-810G Method 514.6, Procedure I, Category 12, Annex D, Fig 514.6D-I
Vibration	Non-Operational, Endurance, Jet aircraft	60 mins, 0.04 g2/Hz to 0.06 g2/Hz, 15 - 2000 Hz, Overall 9.2Grms	MIL-STD-810G Method 514.6, Procedure I, Category 12, Annex D, Fig 514.6D-I
Vibration	Operational, Gunfire Shock	7.5 min sweeps, 5 to 15 g, 66 to 856 Hz	MIL-STD-810G Method 519.6, Procedure III
	Operational, UH-60 Main Rotor speeds and blade numbers	4 hours, 0.001g2/Hz to 0.01g2/Hz, 3 to 500 Hz	MIL-STD-810G Method 514.6, Procedure I, Category 14, Annex A & Annex D, Table 514.6D-III
Acoustic Noise	Operational	30 mins, 140 dB overall, 50 to 10000 Hz	MIL-STD-810G Method 515.6 Procedure I
Conducted	Operational	Power Leads, 30 Hz to 10 kHz	MIL-STD-461G CE101 Par 5.4, CE101-4 Curve #2
Emissions	Operational	Power Leads, 10 kHz to 10MHz	MIL-STD-461G CE102 Par 5.5, Fig CE102-1 Basic Curve
	Operational	Power leads, 30Hz to 150 kHz	MIL-STD-461G CS101 Par 5.7, Fig CS101-1 Curve #2
Conducted Susceptibility	Operational	Bulk cable injection, 10 kHz to 200MHz	MIL-STD-461G CS114 Par 5.12, Fig CS114-1 Curve #5
Susceptibility	Operational	Bulk cable injection, impulse excitation, 30Hz for one minute	MIL-STD-461G CS115 Par 5.13, Fig CS115-1

QUALIFICATION STANDARDS CONT.

	Operational	Damped sinusoidal transients, cables and power leads, 10kHz to 100MHz, 5 minutes	MIL-STD-461G CS116 Par 5.14, Fig CS116-1 and CS116-2
	Operational	Magnetic field, 30Hz to 100kHz	MIL-STD-461G RE101 Par 5.17, Fig RE101-1 and Fig RE101-2
Radiated Emissions	Operational	Electric field, 10kHz to 18GHz	MIL-STD-461G RE102 Par 5.18, Fig RE102-3 Fixed wing external and Fixed wing internal < 25m
Dadista d	Operational	Magnetic field, 30 Hz to 100 kHz	MIL-STD-461G RS101 Par 5.20 Fig RS101-2 Army
Radiated Susceptibility	Operational	Electric field, 2 MHz to 18 GHz	MIL-STD-461G RS103 Par 5.21, Table XI, Aircraft Internal Army
	Operational, normal condition	Load measurements, ask for info	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-101
	Operational, normal condition	Steady state limits, 22 Vdc to 29 Vdc	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-102 Tests A, B, C
	Operational, normal condition	Voltage distortion spectrum	MIL-STD-704F Chg1 Fig 15 MIL-HDBK-704-8 LDC-103 Tests A thru K
	Operational, normal condition	Total ripple	MIL-STD-704F Chg1 Fig 15 MIL-HDBK-704-8 LDC-104, Table LDC104-II
Power Supply	Operational, normal condition	Normal voltage transients, 18Vdc to 29Vdc	MIL-STD-704F Chg1 Fig 13 MIL-HDBK-704-8 LDC-105 Tests AA thru RR
	Operational, transfer interrupt	Power interrupt, 50ms, 22Vdc to 29Vdc	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-201
	Operational, abnormal condition	Steady state limits, 20.0 Vdc and 31.5Vdc, 30 minutes	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-301 Tests A and B
	Operational, abnormal condition	Abnormal voltage transients, abnormal condition	MIL-STD-704F Chg1 Fig 14 MIL-HDBK-704-8 LDC-302, Tests AAA thru NNN, 7 to 50V
	Operational, emergency condition	Steady state limits, 18 Vdc to 29 Vdc	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-401

QUALIFICATION STANDARDS CONT.

	Operational, starting	Starting voltage transients, 12 Vdc to 29 Vdc	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-501, Table LDC501-IV
Power Supply (cont.)	Operational, power failure and automatic recovery	Power failure, from 100ms to 7 seconds	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-601 Tests A thru D
	Operational, power failure	Phase reversal protection/ prevention	MIL-STD-704F Chg1 MIL-HDBK-704-8 LDC-602
Chassis Grounding	Operating	Allow for proper electrical bonding through designated external stub and dedicated pins on connectors	SAE-AS-50881H
Electrical Bonding	Operating	Primary Chassis ground connection for electrical bonding provided by designated external stub	MIL-STD-464C, Paragraph 5.11.3
Mounting	For vibration tolerance	4x 10-32 captive screws	