# CE23-0105

# GENERAL PRODUCT SPECIFICATION FOR MHD2 BACKPLANE AND DAUGHTERCARD INTERCONNECT SYSTEM

# Revision "B"

### Specification Revision Status

| Revision | Description                                                                               | Initial | Date      |
|----------|-------------------------------------------------------------------------------------------|---------|-----------|
| A        | AAO Initial release (Ref TB-2343,<br>Rev A)                                               | GSP     | 1-4-2023  |
| В        | Added VITA 72 results, extended<br>mating cycle test results, added<br>sections 2.3, 12.5 | GSP     | 3-19-2025 |

#### Preface:

Amphenol's MHD2 connector system leverages a proven, high MRL/TRL solution first introduced into the commercial market under the XCede HD2 tradename that has shipped millions of connectors worldwide. This trusted product then underwent design ruggedization and additional qualification assessment and testing for military and aerospace markets as defined herein. The commercial product is not expected to perform at the same levels as those defined in this document.



Aptera, Chameleon, Crossbow, eHSD, GbX, HD Plus, HDM Plus, HDM, HD-Optyx, InfinX, Lynx, NeXLev, Paladin, Ventura, VHDM, VHDM-HSD, and XCede, are trademarks or registered trademarks of Amphenol Corporation. AirMax VS is a registered trademark of FCI. Information contained in this document is summary in nature and subject to change without notice. Appearance of the final, delivered product may vary from the photographs shown herein.

@Amphenol Corporation 2020 - All rights reserved · Printed in the USA

### 1.0 <u>SCOPE</u>

- 1.1 Content
  - 1.1.1 This specification covers the performance, test, and quality requirements for the MHD2 backplane interconnect system. These connectors are two-piece devices that connect two printed circuit boards. Receptacle connectors and pin connectors are through-hole devices with eye-of-the-needle compliant pin contacts. The MHD2 connector family consists of modular configurations with custom power and guidance modules.
  - 1.1.2 This specification covers the backplane and daughtercard interconnects.

#### **1.2** Qualification

1.2.1 When tests are performed on subject product line, procedures specified in EIA-364-B shall be used per the test sequences outlined in Amphenol TCS Technical Bulletin TB2023, unless otherwise noted herein. All inspections shall be performed using applicable inspection plan and product drawings.

### 2.0 <u>REFERENCE DOCUMENTS</u>

- 2.1 The following documents form a part of this specification to the extent specified herein.
  - 2.1.1 Amphenol AAO/TCS Documents TB-2023 Amphenol TCS Commercial Connector Qualification Plan CE23-0102 MHD2 Product Routing Guidelines CE23-0106 MHD2 Connector Design Guidelines
- **2.2** Commercial Standards
  - 2.2.1 EIA-364-B Electrical Connector Test Procedure Including Environmental Classifications
  - 2.2.2 GR-1217-CORE-Generic Requirements for Separable Electrical Connectors used in Telecommunications Hardware
  - 2.2.3 IEC-512-Electromechanical components for electronic equipment Basic testing procedures and measuring methods, IEC-60352-6 international standards, solderless connections, press fit connections, general requirements, test method and practical guidance.
- 2.3 Other Standards and Documents
  - 2.3.1 ANSI/VITA 91.0-2024
  - 2.3.2 ANSI/VITA 46.0-2023 Errata
  - 2.3.3 VITA 72
  - 2.3.4 CE22-1208 Amphenol VITA 72 test report for MHD2
  - 2.3.5 CE25-0316 Amphenol mating cycles report for MHD2

## 3.0 <u>MATERIAL FINISHES</u>

#### 3.1 Contacts

- 3.1.1 Backplane signal blades are 0.30 mm thick high performance copperalloy.
- 3.1.2 Backplane ground blades are 0.30 mm thick high performance copperalloy.
- 3.1.3 Backplane signal and ground blades are lubricated.
- 3.1.4 Receptacle signal contacts are 0.203 mm thick high performance copper alloy.
- 3.1.5 Daughter shields are 0.152 mm thick high performance copper alloy.
- 3.1.6 Power Blades are 0.30 mm thick high performance copper alloy. (Refers to HD Power connector modules)
- 3.1.7 Power Receptacle contacts are 0.30 mm thick high performance copper alloy. (Refers to HD Power connector modules)

#### Notes:

All contacts are plated and meet lead free requirements, refer to EGS205.

### **3.2** Sub Components

| Component        | Material                         | Specification       |
|------------------|----------------------------------|---------------------|
| Insulator        | Glass reinforced polyester (LCP) | Color Grey or Black |
| Stiffener        | Stainless steel, Type 301        | N/A                 |
| Removed at Rev B |                                  |                     |
| Removed at Rev B |                                  |                     |

# 4.0 <u>SKEW DATA</u>

| Wafer A     |                | Wafer B       |             |                |               |
|-------------|----------------|---------------|-------------|----------------|---------------|
| Contact row | Delay,<br>(ps) | Skew,<br>(ps) | Contact row | Delay,<br>(ps) | Skew,<br>(ps) |
| GND1*       | /              | /             | GND1        | /              | /             |
| А           | 104.4          | 0.7           | А           | 93.6           | 0.1           |
| В           | 105.1          | 0.7           | В           | 93.7           | 0.1           |
| GND2        | /              | /             | GND2        | /              | /             |
| С           | 121.2          | 1.1           | С           | 115.3          | 0.9           |
| D           | 122.3          | 1.1           | D           | 116.2          | 0.9           |
| GND3        | /              | /             | GND3        | /              | /             |
| Е           | 141.4          | 0.5           | Е           | 135.0          | 0.1           |
| F           | 141.9          | 0.5           | F           | 135.1          | 0.1           |
| GND4        | /              | /             | GND4        | /              | /             |

## 4.1 HD2 3Pair Daughtercard

\* XCede HD2 3 pair DC and BMA connectors are available with and without wafer A Ground 1 lead.

| Wafer A     |                | Wafer B       |             |                |               |
|-------------|----------------|---------------|-------------|----------------|---------------|
| Contact row | Delay,<br>(ps) | Skew,<br>(ps) | Contact row | Delay,<br>(ps) | Skew,<br>(ps) |
| GND1*       | /              | /             | GND1        | /              | /             |
| А           | 105.4          | 0.2           | А           | 93.7           | 0.2           |
| В           | 105.6          | 0.2           | В           | 93.5           | 0.2           |
| GND2        | /              | /             | GND2        | /              | /             |

## 4.2 HD2 4Pair Daughtercard

| С    | 124.6 | 0.1 | С    | 116.6 | 0.2 |
|------|-------|-----|------|-------|-----|
| D    | 124.5 | 0.1 | D    | 116.4 | 0.2 |
| GND3 | /     | /   | GND3 | /     | /   |
| Е    | 144.4 | 0.1 | Е    | 137.6 | 0.1 |
| F    | 144.3 | 0.1 | F    | 137.5 | 0.1 |
| GND4 | /     | /   | GND4 | /     | /   |
| G    | 163.5 | 0.1 | G    | 160.7 | 0.2 |
| Н    | 163.6 | 0.1 | Н    | 160.5 | 0.2 |
| GND5 | /     | /   | GND5 | /     | /   |

\* XCede HD2 4 pair DC and BMA connectors are available with and without wafer A Ground 1 lead.

| Wafer A     |                | Wafer B       |             |                |               |
|-------------|----------------|---------------|-------------|----------------|---------------|
| Contact row | Delay,<br>(ps) | Skew,<br>(ps) | Contact row | Delay,<br>(ps) | Skew,<br>(ps) |
| GND1*       | /              |               | GND1        | /              | /             |
| А           | 138.3          | 0.7           | А           | 124.7          | 0.8           |
| В           | 137.6          | 0.7           | В           | 123.9          | 0.8           |
| GND2        | /              | /             | GND2        | /              | /             |
| С           | 158.2          | 1.1           | С           | 149.2          | 1.6           |
| D           | 157.1          | 1.1           | D           | 147.6          | 1.0           |
| GND3        | /              | /             | GND3        | /              | /             |
| Е           | 178.1          | 1 1           | Е           | 171.3          | 2.2           |
| F           | 177.0          | 1.1           | F           | 169.0          | 2.3           |
| GND4        | /              | /             | GND4        | /              | /             |
| G           | 196.2          | 0.3           | G           | 195.0          | 1.9           |
| Н           | 195.9          | 0.3           | Н           | 193.1          | 1.9           |
| GND5        | /              | /             | GND5        | /              | /             |
| J           | 220.0          | 0.8           | J           | 219.1          | 1.4           |
| K           | 219.2          | 0.8           | K           | 217.7          | 1.4           |
| GND6        | /              | /             | GND6        | /              | /             |
| L           | 241.3          | 0.2           | L           | 237.9          | 0.4           |
| М           | 241.1          | 0.2           | М           | 238.3          | 0.4           |
| GND7        | /              | /             | GND7        | /              | /             |

## 4.3 HD2 6 Pair Daughtercard

\* XCede HD2 6 pair DC and BMA connectors are available with and without wafer A Ground 1 lead.

## 5.0 <u>ELECTRICAL RATINGS</u>

### 5.1 Resistance

| Description                                     | Value        |
|-------------------------------------------------|--------------|
| Mating Interface Contact Resistance Change      | 10mΩ Maximum |
| Compliant Pin to Plated Through Hole Resistance | 1 mΩ Maximum |
| Insulation Resistance                           | 1000 Mega Ω  |

#### 5.2 Voltage

| Description | Agency          | Working       | DWV           |
|-------------|-----------------|---------------|---------------|
| Signal      | UL 48 VAC (RMS) | 250 VAC (RMS) | 500 VAC (RMS) |
| Power       | UL 48 VAC (RMS) | 250 VAC (RMS) | 500 VAC (RMS) |

## 6.0 <u>CURRENT AND TEMPERATURE RATINGS</u>

| Description                                  | Value                                               |
|----------------------------------------------|-----------------------------------------------------|
| Signal Contact                               | 1.5 Amp per contact <sup><math>(1)(2)</math></sup>  |
| Ground Contact                               | 1.5 Amp per contact <sup><math>(1)</math> (2)</sup> |
| Power Contact (Refers to HD Power connector) | 10 Amps per blade <sup>(1)(2)</sup>                 |
| Maximum operating temperature rating         | 105°C                                               |
| Minimum operating temperature rating         | -40°C                                               |
| Storage Temperature Rating                   | -65°C to +125°C                                     |

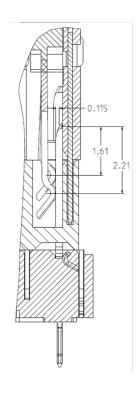
## Note:

1, Current has been de-rated per EIA-364-TP70

2,Product was tested in worst-case conditions where the PCB did not have any power planes. For other test conditions please contact ATCS Application Engineering.

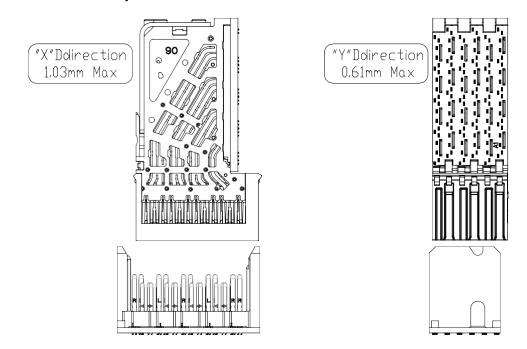
## 7.0 <u>MECHANICAL RATINGS</u>

#### 7.1 Mechanical Performance

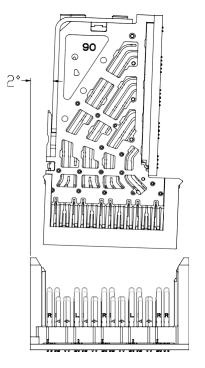

| Value, per contact                                           |                                | itact               |
|--------------------------------------------------------------|--------------------------------|---------------------|
| Description                                                  | Grams                          | Newtons             |
| Signal and Shield Contact Normal Force                       | 40 End Of Life (EOL)           | 0.40                |
| Signal and Shield Contact Engagement Force <sup>(3)</sup>    | 60 max                         | 0.60 max            |
| Signal and Shield Contact Separation Force <sup>(3)(4)</sup> | 15 min                         | 0.15 min            |
| Power Contact Normal Force                                   | 70 End Of Life (EOL)           | 0.70                |
| Power Contact Engagement Force <sup>(3)</sup>                | 85 max                         | 0.85 max            |
| Power Contact Separation Force <sup>(3)(4)</sup>             | 40 min                         | 0.40 min            |
| Signal, Shield, and Power Contact Durability                 | Rated for 500+ Mating Cycles ( | see section 12.5.2) |
| Connector Mating Angle                                       | +/- 2 degrees X and Y axis     |                     |
| Contact Mechanical Wipe Values                               | Signal2.0Shield2.0             |                     |

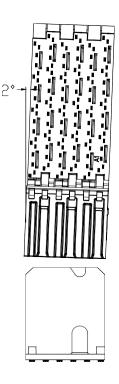
|                               | Value, per wafer |          |
|-------------------------------|------------------|----------|
| Description                   | Lbs              | Newtons  |
| Front housing retention force | 4 min            | 17.6 min |

Note:


- 3. These values are maximum and minimum expected forces, averaged over the number of mating points (contacts) in a connector. This data is to be used for purposes of system mechanical sizing.
- 4. All engagement/separation force values assume the connector is pressed on a sufficiently rigid PCB without excessive flexing during mating.

- 7.2 Backplane, Daughtercard and Mezzanine Module Assembly True Position Requirements
  - 7.2.1 The true position of the compliant pin interface is defined prior to connector pressing onto board.
- True position Type Detailed view specification 20.90 0.66 GROUND 0.55 SIGNAL ⊕ Ø0.30 BP MHD2 Blade TP:0.30 12.0 Backplane Compliant pin:0.24 0-4.03 (1.10) X\_BP TAIL LENGTH ◄ Y\_DC 5X1.80 =(9.00) 1.80 R 0.127 MHD2 Compliant pin:0.24 Daughtercard P 0.42 FROM COMPLIANT Y\_BP
- 7.2.2 Compliant pin tips to be measured per best fit floating grid.





7.3 Contact wipe length (Both signal and ground for MHD2)

# 7.4 Gather ability



#### 7.5 Mating angle





# 8.0 <u>COMPLIANT PIN INTERFACE</u>

| Description                                             | Value per Pin, lbs              |
|---------------------------------------------------------|---------------------------------|
| 0.0157" Drill (MHD2 Femto DC/                           | BMA Pin)                        |
| Signal and Shield Compliant Pin Insertion, 0.0157 drill | 5 Maximum                       |
| Signal and Shield Compliant Pin Retention, 0.0157 drill | 0.50 Minimum <sup>(5) (6)</sup> |
| 0.033" Drill (XCede HD PLUS Power I                     | DC/BMA Pin) *                   |
| Power Compliant Pin Insertion                           | 15 Maximum                      |
| Power Compliant Pin Retention                           | 2.0 Minimum <sup>(5)</sup>      |

\* XCede HD2 power share with XCede HD PLUS Power module.

8.1 Radial hole deformation not to exceed 70µm measured from drilled hole

**8.2** Axial hole deformation not to exceed 50µm per IEC 60352-5 measured in the vertical plane

Notes:

5. Refer to technical bulletin CE23-0102 MHD2 Family Routing Guidelines, for drilled and finished hole requirements.

6. The average compliant pin retention shall not be less than 0.5lbf with no more than 10% of retention values between 0.5lbf and 0.4lbf, and no retention values below 0.4lbf.

## 9.0 **QUALIFICATION TESTING**

- 9.1 Sample Selection: Refer to Section 13 for minimum recommended connector sample size
- **9.2** Test Sequence: Qualification testing shall be performed per the sequences listed in Section 13 of this document.
- **9.3** Except as noted, the qualification for the MHD2 product line was performed with the 6 Pair XCede HD2 interconnect and by similarity all other derivatives of the product line are considered qualified.

### 10.0 **REQUALIFICATION TESTING**

**10.1** If changes affecting form, fit or function are made to the product or to the manufacturing process, Product Engineering and Mechanical Integrity Engineering shall coordinate requalification testing of all or part of the original testing sequence as required.

### 11.0 <u>ACCEPTANCE</u>

**11.1** Acceptance is based on verification that the product meets the requirements of Section 12. Failures attributed to equipment, test set-up, or operator deficiencies shall not disqualify the product. If product failure occurs, corrective action shall be taken and samples resubmitted for qualification. Verification of corrective action is required before re-submittal.

### 12.0 SPECIFICATION SUMMARY

| Parameters                                 | Specification                                                                                                                  | MHD2 Value                                                                                                                                    | Reference Document                                                                  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Plating Integrity                          | Acceptable Porosity                                                                                                            | 3 Pores per cm <sup>2</sup>                                                                                                                   | EIA-364-TP53<br>Exposed to nitric<br>vapors                                         |
| Contact Metallization<br>XCede HD2<br>MHD2 | <ul> <li>30μin Gold min over 50-<br/>150μin Ni</li> <li>50μin Gold min over<br/>80μin Ni min (mating<br/>interface)</li> </ul> | 50µin Gold min over 80µin<br>min Ni or<br>10µin Gold min over 20-<br>40µin NiW alloy or<br>10µin Gold min over 20 Pd-<br>Ni over 50-150µin Ni | GR-1217-CORE<br>Per paragraph 5.2.5<br>EIA-364-TP09                                 |
| Durability XCede HD2                       | 200 Cycles                                                                                                                     | 250 Cycles                                                                                                                                    | GR-1217-CORE<br>Per paragraph 5.2.5<br>EIA-364-TP09                                 |
| Durability MHD2                            | 500 Cycles Min                                                                                                                 | 700+ with no plating degradation or resistance change greater than 5 m $\Omega$                                                               | CE25-0316<br>(tested in worst-case with no<br>guide hardware)<br>See section 12.5.2 |
| Base                                       | Surface finish is 16 RMS<br>or otherwise specified                                                                             | 16 RMS on mating surfaces                                                                                                                     | GR-1217-CORE                                                                        |
| Lubrication                                | Must be present on all<br>backplane blades/shields                                                                             | Must be present on all<br>backplane blades/RAM<br>blades/shields                                                                              | GR-1217-CORE<br>R5-67                                                               |
| Flammability Rating                        | 94V-0                                                                                                                          | Must Pass Requirement                                                                                                                         | UL94                                                                                |

#### 12.1 Material

### 12.2 Mechanical

| Parameters              | Specification          | MHD2 Value               | <b>Reference Document</b> |
|-------------------------|------------------------|--------------------------|---------------------------|
| Contact Normal Force    | 40 Grams End of Life   | 40 Grams End of Life     | GR-1217-CORE              |
|                         | (EOL)                  | (EOL)                    | EIA-364-TP04              |
| Engagement Force        | NA                     | SEE SECTION 7.1          | EIA-364-TP37A             |
| Contact Strength        | Apply 0.25 lbs. Axial  | Apply 0.25 lbs. Axial    | GB-1217-CORE              |
|                         | Force per contact      | Force per contact        | Per paragraph 6.1.7       |
| Contact Wipe Distance   | 0.51 mm (0.020") min.  | SEE SECTION 7.4          | GR-1217-CORE              |
|                         |                        |                          | R5-28                     |
| Polarization Force      | 100 N (22.5 lbs)       | Mate Samples 180° out of | GR-1217-CORE              |
|                         |                        | Phase                    | Per paragraph 5.1.9       |
| Compliant Pin Retention | N/A                    | SEE SECTION 8.0          | GR-1217-CORE              |
|                         |                        |                          | EIA-364-TP29              |
| Contact Geometry        | Minimum one curved     | Minimum one curved       | N/A                       |
|                         | surface in mating area | surface in mating area   |                           |
| Hertzian Stress         | N/A                    | Greater than 150 Kpsi    | N/A                       |

## 12.3 Electrical

| Parameters              | Specification                            | MHD2 Value                        | Reference Document                  |
|-------------------------|------------------------------------------|-----------------------------------|-------------------------------------|
| Contact Resistance      | Less than $10m\Omega$ change             | Less than 10milli-Ohms change     | GR-1217-CORE                        |
| Stability (LLCR)        | from initial reading                     | from initial reading              | Per paragraph 6.2.1<br>EIA-364-TP23 |
| Compliant Pin to PTH    | $1m\Omega$ maximum                       | 1milli-Ohms maximum               | GR-1217-CORE                        |
| Resistance              |                                          |                                   | EIA-364-TP23                        |
|                         | Test current 100mA and 20mV open circuit |                                   |                                     |
| Signal Continuity       | Less than 10 nanosecond interrupt        | Less than 10 nanosecond interrupt | GR-1217-CORE                        |
| Current Rating          | Less than 30°C                           | SEE SECTION 6.0                   | GR-1217-CORE                        |
|                         | Temperature Rise                         |                                   | EIA-364-TP70                        |
| Insulation Resistance   | 1,000 Mega Ohms                          | 1,000 Mega Ohms                   | GR-1217-CORE                        |
| Dielectric Withstanding | 1,000 VAC Peak                           | 500 VAC Peak                      | GR-1217-CORE                        |
|                         |                                          | De-rated value                    | EIA-364-TP20                        |

#### 12.4 Environmental

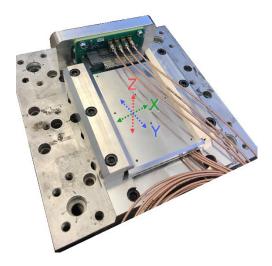
| Parameters        | Specification                                                                                                   | MHD2 Value                     | Reference Document                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------|
| Temperature Life  | No Change in LLCR<br>greater than 10mΩ                                                                          | 10milli-Ohms Maximum<br>change | GR-1217-CORE<br>EIA-364-TP17<br>Test condition 4<br>Per paragraph 6.3.2                      |
| Thermal Shock     | No Change in LLCR<br>greater than 10mΩ<br>5 cycles for -55°C to 85°C                                            | Same as above                  | GR-1217-CORE<br>Per paragraph 6.3.3<br>EIA-364-TP32                                          |
| Humidity Cycling  | No Change in LLCR<br>greater than 10mΩ<br>Relative Humidity 90 to<br>95% For 500 hrs                            | Same as above                  | GR-1217-CORE<br>EIA-364-TP31<br>Procedure II                                                 |
| Dust              | No Change in LLCR greater than $10m\Omega$                                                                      | Same as above                  | GR-1217-CORE<br>Per paragraph 9.1.1.1<br>EIA-364-TP91                                        |
| Vibration         | No Change in LLCR<br>greater than 10mΩ<br>Random Vibration 9.26g<br>RMS                                         | Same as above                  | GR-1217-CORE<br>EIA-364-TP28E<br>Condition V-C-9.26g<br>rms Random.<br>Per paragraph 9.1.2.1 |
| Mechanical Shock  | No Change in LLCR<br>greater than 10mΩ50g Half sine excitation.                                                 | Same as above                  | GR-1217-CORE<br>EIA-364-TP27 Test<br>condition A                                             |
| Mixed Flowing Gas | No Change in LLCR         greater than 10mΩ         300 hrs at 105°C thermal         conditioning also included | Same as above                  | GR-1217-CORE<br>Per paragraph 9.1.3<br>EIA-364-TP65 Class<br>IIA                             |

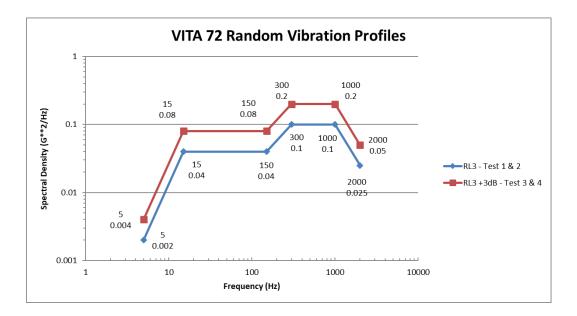
## 12.5 Extended Mechanical MHD2

# 12.5.1 VITA 72 vibration/mechanical shock

### **Purpose of Test:**

Testing was performed on Amphenol's Xcede HD2 connector to determine its ability to withstand VITA 72 vibration levels. The test was performed on a 3U slot configuration, representative of a true product end-use. The samples, pcbs, fixture, covers, and associated physical construction intentionally mimicked the typical use in embedded applications. The test followed the "RVPX 6U Connector module test plan, Rev. 6 (JAN, 2005)" plan defined by the VITA 72 working group with the added monitoring for interruptions of greater than 1 nanosecond as well as any changes in LLCR of greater than 10 m $\Omega$  on any individual contact, or greater than an average of 5 m $\Omega$  per connector module.


## Samples:


| Sample       | Part Number | Description                              |
|--------------|-------------|------------------------------------------|
| VITA 46 3U   |             |                                          |
| Daughtercard | MHD24P800M1 | Right angle daughtercard 8 pos. end      |
| Amphenol     |             |                                          |
| VITA 46 3U   |             |                                          |
| Backplane    | MHD24J800M1 | Vertical receptacle backplane 8 pos. end |
| Amphenol     |             |                                          |

### **Test Sequence:**

| Pre-test                      |                        |                  |  |  |
|-------------------------------|------------------------|------------------|--|--|
| Test                          | Test Exposure          |                  |  |  |
|                               | 1 octave/minute 5Hz    |                  |  |  |
| Sin Sweep resonance           | to 2,000Hz 1 sweep per | ~25 minutes      |  |  |
|                               | axis                   |                  |  |  |
| Test sequ                     | ence A (1 sequence per | axis)            |  |  |
| Test                          | Exposure               | Duration (hours) |  |  |
| Random Vibe L3                | 1 hour                 | 1 hours          |  |  |
| Sine Vibe L3                  | 1 hour                 | 1 hours          |  |  |
| Shock L3                      | 3pos/3neg pulses       |                  |  |  |
| Total sequen                  | ce A (All 3 axis)      | 6 hours          |  |  |
| Test sequ                     | ence B (1 sequence per | axis)            |  |  |
| Test                          | Exposure               | Duration (hours) |  |  |
| Random Vibe L3                | 1 hour                 | 1 hours          |  |  |
| Sine Vibe L3                  | 1 hour                 | 1 hours          |  |  |
| Shock L3                      | 3pos/3neg pulses       |                  |  |  |
| Total sequen                  | ce B (All 3 axis)      | 6 hours          |  |  |
| Test sequ                     | ence C (1 sequence per | axis)            |  |  |
| Test                          | Exposure               | Duration (hours) |  |  |
| Random Vibe L3+3dB            | 1 hour                 | 3 hours          |  |  |
| Total sequence                | e C (All 3 Axis)       | 3 hours          |  |  |
| Test sequence D (Z axis only) |                        |                  |  |  |
| Test                          | Exposure               | Duration (hours) |  |  |
| Random Vibe L3+3dB            | 12                     |                  |  |  |
| Total sequence D 12           |                        |                  |  |  |

## **Test Fixture:**





## **Test Summary:**

| Pre-test                      |                                                       |                    |        |  |
|-------------------------------|-------------------------------------------------------|--------------------|--------|--|
| Test                          | Test Exposure                                         |                    | Result |  |
| Sin Sweep resonance           | 1 octave/minute 5Hz<br>to 2,000Hz 1 sweep per<br>axis | ~25 minutes        | Pass   |  |
| Test                          | sequence A (1 sequence                                | e per axis)        |        |  |
| Test                          | Exposure                                              | Duration (hours)   |        |  |
| Random Vibe L3                | 1 hour                                                | 1 hours            |        |  |
| Sine Vibe L3                  | 1 hour                                                | 1 hours            | Pass   |  |
| Shock L3                      | 3pos/3neg pulses                                      |                    |        |  |
| Total sequen                  | ce A (All 3 axis)                                     | 6 hours            |        |  |
| Test                          | sequence B (1 sequence                                | e per axis)        |        |  |
| Test                          | Exposure                                              | Duration (hours)   |        |  |
| Random Vibe L3                | 1 hour                                                | 1 hours            |        |  |
| Sine Vibe L3                  | 1 hour                                                | 1 hours            | Pass   |  |
| Shock L3                      | 3pos/3neg pulses                                      |                    |        |  |
| Total sequen                  | ce B (All 3 axis)                                     | 6 hours            |        |  |
| Test                          | sequence C (1 sequence                                | e per axis)        |        |  |
| Test                          | Exposure                                              | e Duration (hours) |        |  |
| Random Vibe L3+3dB            | 1 hour                                                | 3 hours            | Pass   |  |
| Total sequence C (All 3 Axis) |                                                       | 3 hours            |        |  |
| Test sequence D (Z axis only) |                                                       |                    |        |  |
| Test                          | Exposure                                              | Duration (hours)   |        |  |
| Random Vibe L3+3dB 12 hours   |                                                       | 12                 | Pass   |  |
| Total se                      | quence D                                              | 12                 |        |  |

In addition the largest change in LLCR was 2.8 m $\Omega$  and there were zero nanosecond signal interruptions observed during the testing.

## 12.5.2 Extended durability cycles

## **Purpose of Test:**

Validate the acceptability of a higher mating cycle rating than the 250 originally tested as part of the Telcordia qualification in section 12.1 on the ruggedized military version (MHD2) connector.

#### Samples:

| Sample       | Part Number | Description                              |
|--------------|-------------|------------------------------------------|
| VITA 46 3U   |             |                                          |
| Daughtercard | MHD24P800M1 | Right angle daughtercard 8 pos. end      |
| Amphenol     |             |                                          |
| VITA 46 3U   |             |                                          |
| Backplane    | MHD24J800M1 | Vertical receptacle backplane 8 pos. end |
| Amphenol     |             |                                          |

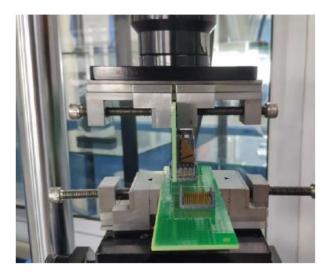
#### **Test sequence:**

Mated pairs of samples listed above were assembled to test pcbs and mounted to a fixture attached to the durability test machine. High-resolution images of the mating interfaces were taken prior to the test for all sample sets. Sample set 1 was wired as described in section 14 with LLCR monitoring and no LLCR changes greater than  $5m\Omega$  were observed through 10,000 mating cycles. Sample set 2 was removed from the test fixture and had high-resolution images of the mating interfaces at intervals of 250, 500, and 750 mating cycles. Sample set 2 was not wired, but readings of LLCR were taken at those intervals and no LLCR changes greater than  $5m\Omega$  were observed at those intervals.



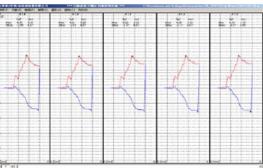
#### **Test Summary:**

Results of testing so far validate rating the mating cycles for the MHD2 connector to greater than 500 cycles. Further testing is expected to increase this rating in the future.


## 12.5.3 Mating force (50 micro-inch gold mating interface)

## **Purpose of Test:**

Validate the MHD2 increased plating thickness in the mating interface area does not significantly increase mating forces.


Test Setup





| Max mating force ≤60gf Min un-mating force ≥15g<br>MHD2 4Pr DC VS BMA (838Plating) Mating&Unmating_#1 |           |           |                 |          |  |
|-------------------------------------------------------------------------------------------------------|-----------|-----------|-----------------|----------|--|
| NO                                                                                                    | Full pin/ | /unit:kgf | Per pin/unit:gf |          |  |
| NO.                                                                                                   | mating    | unmating  | mating          | unmating |  |
| 1                                                                                                     | 4.30      | 2.98      | 41.35           | 28.65    |  |
| 2                                                                                                     | 4.21      | 3.01      | 40.48           | 28.94    |  |
| 3                                                                                                     | 4.22      | 3.07      | 40.58           | 29.52    |  |
| 4                                                                                                     | 4.24      | 3.13      | 40.77           | 30.10    |  |

Sample#1



Mating and Un-Mating forces were within original qualification parameters and insignificantly different from the original values.

## 13.0 TELCORDIA QUALIFICATION TEST GROUP SUMMARY

## 13.1 Test Groups

Group 1: Vibration and mechanical shock with dust and durability

Group 2: Thermal shock and humidity with dust and durability

Group 3: Temperature life, 500 hrs @ 105°C

Group 4: Mixed flowing gas, 4 gases with durability-thermal conditioning included prior to test

Group 5: Porosity and plating thickness

Note: Compliant pins are tested separately.

| GROUP1             | GROUP2               | GROUP3            | GROUP4          | GROUP5       |
|--------------------|----------------------|-------------------|-----------------|--------------|
| Visual Exam        | Visual Exam          | Visual Exam       | Visual Exam     | Mechanical   |
| $\downarrow$       | $\downarrow$         | $\downarrow$      | $\downarrow$    | Exam         |
| LLCR               | LLCR                 | LLCR              | LLCR            | $\downarrow$ |
| $\downarrow$       | $\downarrow$         | $\downarrow$      | $\downarrow$    | Plating      |
| Mate/Unmate        | Mate/Unmate          | Mate/Unmate       | Durability 100x | Thickness    |
| Force              | Force                | Force             | ↓ <sup>¯</sup>  | $\downarrow$ |
| $\downarrow$       | $\downarrow$         | $\downarrow$      | LLCR            | Plating      |
| LLCR               | LLCR                 | Durability 50x    | $\downarrow$    | Porosity     |
| $\downarrow$       | $\downarrow$         | ↓ J               | Pre-Condition   | 2            |
| Durability         | Insulation           | LLCR              | 300 hrs at      |              |
| 100x               | Resistance (IR)      |                   | 105 C           |              |
| ↓<br>↓             |                      | Temperature       | 100 C           |              |
| LLCR               | Dielectric           | Life              | Mate/Unmate     |              |
| ⊥LECK              | Withstanding         | ↓<br>↓            | Force           |              |
| *<br>Temperature   | Voltage              | LLCR              | ↓ Toree         |              |
| Precondition       | (DWV)                |                   | LLCR            |              |
| (72 hours at       |                      | Mate/Unmate       | LLCK<br>↓       |              |
| (72 hours at 105°) | v<br>Durability 250x | Force             | •               |              |
| 105)               |                      | roice<br>↓        | Mixed Flowing   | _            |
| ↓<br>LLCD          | ↓<br>LLCD            |                   | Gas (Unmated)   |              |
| LLCR<br>↓          | LLCR                 | LLCR              | ↓<br>51 1 1100  |              |
| •                  | •                    |                   | 5th day LLCR    |              |
| Dust               | Dust                 |                   | 10th day LLCR   |              |
| $\downarrow$       | $\downarrow$         |                   | $\checkmark$    |              |
| LLCR               | LLCR                 |                   | Mixed Flowing ┥ | _            |
| $\downarrow$       | $\checkmark$         |                   | Gas (Mate)      |              |
| Vibration 3        | Thermal Shock        |                   | $\checkmark$    |              |
| Axis               | $\downarrow$         |                   | 5th day LLCR    |              |
| $\downarrow$       | IR                   |                   | 10th day LLCR   |              |
| LLCR               | $\downarrow$         |                   | $\downarrow$    |              |
| X,Y,Z axis         | DWV                  |                   | Disturbance     |              |
| $\downarrow$       | $\downarrow$         |                   | $\downarrow$    |              |
| Mechanical         | LLCR                 |                   | LLCR            |              |
| Shock              | $\downarrow$         |                   | $\downarrow$    |              |
| 3 Axis             | Humidity             |                   | Durability 100x |              |
| $\downarrow$       | $\downarrow$         |                   | ↓ J             |              |
| LLCR               | LLCR                 |                   | LLCR            |              |
| X,Y,Z axis         | ↓<br>↓               |                   |                 |              |
| ý                  | ÎR                   |                   |                 |              |
| Durability         | iik<br>↓             |                   |                 |              |
| 100x               | •                    |                   |                 |              |
| $\downarrow$       | DWV                  |                   |                 |              |
| ↓<br>Mate/Unmate   |                      |                   |                 |              |
| Force              | Mate/Unmate          |                   |                 |              |
| Force<br>↓         | Force                |                   |                 |              |
|                    | $\downarrow$         |                   |                 |              |
| LLCR               | LLCR                 |                   |                 |              |
| FIGUI              | RE 1, Telcordia Te   | st Plan GR-1217-C | CORE, CENTRAL   | OFFICE       |

**13.2** Each test group will have a minimum 200 LLCR measurements.

#### 13.3 Definitions

- 13.3.1 LLCR- Low Level Contact Resistance
- 13.3.2 CPIR- Compliant Pin Interface Resistance
- 13.3.3 DWV- Dielectric Withstanding Voltage
- 13.3.4 IR- Insulation Resistance

### 14.0 <u>RESISTANCE MEASUREMENT SET-UP</u>

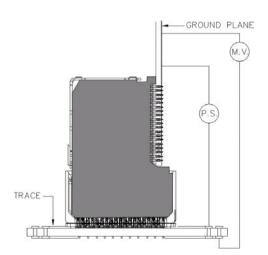



FIGURE 2. Typical contact resistance set-up. Kelvin 4 wire traces from connector hole to monitoring hole.

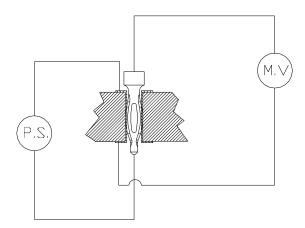



FIGURE 3. Typical compliant pin interface resistance (CPIR) set-up.