

ENGINEERING SUMMARY	Report #	ESR-9553
REPORT	EWOM #	N/A
	CLT #	N/A
Evaluation of RVPX product line to VITA 46	Revision #:	4
standards	Publis	h Date
	3/8/2	2016

Prepared By:				
-	Sean Langelier	Design Engineer	BLP	
Approved By:				
-	Eric Hickey	Manager	BLP	
Revised/Reaffirmed By:				
-	Greg Peck	Manager	BLP	

Distribution List:

Table of Contents

Revision	n History	2
Table of	f Contents	3
1. Su	nmary	5
1.1.	Purpose of Test	5
1.2.	References	5
1.3.	Testing Agencies	5
2. Sai	nples and TestSchedule	6
2.1.	Samples	6
2.2.	Test sequence	7
3. Su	mmary of Testing	9
3.1.	Initial Examination of product	10
3.2.	Low Level Contact resistance	10
3.3.	Safety Ground	10
3.4.	Dielectric Withstanding voltage	
3.5.	Random Vibration	
3.6.	Mechanical Shock	10
3.7.	Bench Handling	10
3.8.	Humidity / Temperature Cycling	10
3.9.	Salt fog with SO2	10
3.10.	Dust Contamination	10
3.11.	Electro Static Discharge (ESD)	11
3.12.	Mating Force	11
3.13.	Unmating Force	11
3.14.	Durability	11
3.15.	Current Overload	11
3.16.	Final Examination of Product	11
4. Te	st Methods	12
4.1.	Initial Examination of product	12
4.2.	Low Level Contact resistance	12
4.3.	Safety Ground	12
4.4.	Dielectric Withstanding voltage	13
4.5.	Vibration	13
4.6.	Mechanical Shock	14
4.7.	Bench Handling	14
4.8.	Humidity / Temperature Cycling	14
4.9.	Salt fog with SO2	14
Ampheno	l Corporation Information contained herein is proprietary and confidential to Amphenol Corporation, 2014.	Sidney, NY 13838

ESR-9553 Rev: 4

4	.10.	Dust Contamination	15
4	.11.	Electro Static Discharge (ESD)	15
2	.12.	Mating Force	15
2	.13.	Unmating Force	15
2	.14.	Durability	16
2	.15.	Current Overload	16
2	.16.	Final Examination of Product	16
5.	Con	clusions	16

List of Figures and Tables

Figure 1: Typical Sample	5
Figure 2: Test Sequence Groups A-D	6
Figure 3: Test Sequence Groups E-G	7
Figure 4: Typical LLCR Measurment Set Up	
Figure 5: Typical Safety Ground Measurement Set Up	
Figure 6: Vibration Test Set Up	
Figure 7: Mechanical Shock Test Set Up	
Figure 8: Salt Fog with SO ₂ Set Up	
Figure 9: Mate / Extraction Force Set Up	14

Table 1: Test Samples / Description	.6
Table 2: Test Results	.8

1. Summary

1.1. Purpose of Test

Testing was performed on Amphenol's R-VPX Ruggedized VITA 46 connector to determine its conformance to the requirements of VITA 46. Testing also included intermatability with current VITA 46 compliant connectors offered by another connector manufacturer.

1.2. References

The following documents were referenced for testing in this report. Unless specified, the version in effect at time of testing will be followed.

RVPX 6U Connector module test plan, Rev. 6 (JAN, 2005) EN-61000-4-2, Electrostatic Discharge Immunity Test MIL-STD-1344 MIL-STD-810F EIA Publication 364 ASTM G85 R-VPX White Paper

1.3. Testing Agencies

Contech Research, Inc. 750 Narragansett Park Drive Rumford, RI 02916-1035

2. Samples and TestSchedule

2.1. Samples

Test specimens were representative of normal production lots. Specimens identified with the following part numbers were used for test

Sample	Part Number	Description	
VITA 46 6U	RVPX-P08VM2	Right angle daughtercard 8 pos. end	
Daughtercard	RVPX-P16DM2	Right angle daughtercard 16 pos. center	
Amphenol	RVPX-HMM6	Right angle daughtercard guide module	
	RVPX-J08EM2	Vertical receptacle backplane 8 pos. end	
VITA 46 6U	RVPX-J16MM2	Vertical receptacle backplane 16 pos. middle	
Backplane Amphenol	RVPX-J16EM2	Vertical receptacle backplane 16 pos. end	
Amplicitor	RVPX-HPM-2	Keyed guide pin machined	
VITA 46 6U Daughtercard	TE Connectivity RT2-R	Right angle daughtercard 8 pos. end	
	TE Connectivity RT2-R	Right angle daughtercard 16 pos. center	
	TE Connectivity RT2-R	Right angle daughtercard guide module	
	TE Connectivity RT2-R	Vertical receptacle backplane 8 pos. end	
VITA 46 6U Backplane	TE Connectivity RT2-R	Vertical receptacle backplane 16 pos. middle	
	TE Connectivity RT2-R	Vertical receptacle backplane 16 pos. end	
	TE Connectivity	Keyed guide pin machined	
Table 1: Sample Description			

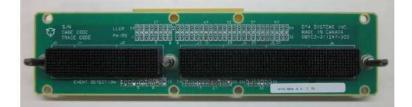


Figure 1: Typical Test Sample

2.2. Test sequence

SAMPLE PREPARATION

			1	
-LLC	CR	-LLCR	-LLCR	-LLCR
-DW		-DWV	-DWV	-DWV
-SAFETY	' GND	-SAFETY GND	-SAFETY GND	-SAFETY GND
		1		I
SINE	VIB	BENCH HANDLING	THERMAL CYCLE	SALT FOG W/ S02
			W/ HUMIDITY	
LLC	D		I	I
-DW		-LLCR		-LLCR
-SAFETY		-DWV	-LLCR	-DWV
JAILII	GND	-SAFETY GND	-DWV	-SAFETY GND
		1	-SAFETY GND	
MECH. S	НОСК	I		
1		VIB. @ TEMP.		SALT FOG W/ S02
-LLC	R	1		
-DW	V	-LLCR		-LLCR
-SAFETY	GND	-DWV		-DWV
		-SAFETY GND		-SAFETY GND
RANDOM VIB.	HALT VIB.			
-LLCR	-LLCR			
-DWV	-DWV			
-SAFETY GND	-SAFETY GN	D		
GROUP A1	GROUP A2	<u>GROUP B</u>	<u>GROUP C</u>	<u>GROUP D</u>

Figure 2: Test sequence groups A-D

ESR-9553 Rev: 4		Page 8 of 16
-LLCR -DWV -SAFETY GND UUST -LLCR -DWV -SAFETY GND -LLCR -DWV -SAFETY GND	-LLCR -DWV -SAFETY GND MATE/UNMATE FORCE DURABILITY MATE/UNMATE FORCE -LLCR -DWV -SAFETY GND MATE/UNMATE FORCE -LLCR -DWV -SAFETY GND -LLCR -DWV -SAFETY GND -LLCR -DWV -SAFETY GND -LLCR -DWV -SAFETY GND -LLCR -DWV -SAFETY GND -LLCR -DWV -SAFETY GND -LLCR -DWV -SAFETY GND	-LLCR -DWV -SAFETY GND CURRENT OVERLOAD -LLCR -DWV -SAFETY GND
<u>GROUP E</u>	<u>GROUP F</u>	<u>GROUP G</u>

Figure 3: Test sequence Groups E-G

3. Summary of Testing

Subgroup	Samples	Environmental / Mechanical Test	Specification / Standard	Verification method	Result	
				LLCR	Pass	
		Shock	MIL-STD-1344A, Method 2004.1, Test Condition A	DWV		
				Safety GND.		
	RVPX DC / RVPX BP		MIL-STD-1344A, Method 2005.1, Test Condition V, letter	LLCR	Pass	
A	RVPX DC / RT2-R BP	Random Vibration 1	D, 1.5 hours/axis	DWV		
	RT2-R DC / RVPX BP RT2-R BP / RT2-R DC		D, T.O HOUIS/AXIS	Safety GND.		
	R12-K BP / K12-K DC		HALT/step stress (0.125, 0.15, 0.175 g ² /Hz for 15 min.	LLCR		
		Random Vibration 2	each; 0.2 g2/Hz for 45 min.)	DWV	Pass	
			each, 0.2 y2/H2 für 45 min.)	Safety GND.	1	
				LLCR		
		Bench Handling	MIL-STD-810F, Method 516.5, Procedure VI	DWV	Pass	
	RVPX DC / RVPX BP	_		Safety GND.	1	
В	RVPX DC / RT2-R BP		MIL CTD 40444 Method 2005 4 Test Condition V/ letter	LLCR		
	RT2-R DC / RVPX BP	Vilevetice / Texasevet.ue	MIL-STD-1344A, Method 2005.1, Test Condition V, letter	DWV	1	
	RT2-R BP / RT2-R DC	Vibration / Temperature	D, 1.5 hours/axis w/temperature cycle from -40°C to 100°C with 30 minute dwell and 15 minute ramps	Safety GND.	– Pass	
					LLCR	+
С	RVPX DC / RVPX BP	Humidity	MIL-STD-1344A, Method 1002.2, Type III (240 hours)	DWV	Pass	
		,			1	
		Salt Fog + SO ₂	ASTM G85, Annex A4 (cycles A4.4.4.1), Two 24 hour	LLCR	Pass	
D	RVPX DC / RVPX BP			DWV		
		cycles		Safety GND.	-	
				LLCR		
		Dust	MIL-STD-810F, Method 510.4, Procedure I	DWV	Pass	
_				Safety GND.	1	
E	RVPX DC / RVPX BP			LLCR	Pass	
		Sand	MIL-STD-810F, Method 510.4, Procedure II	DWV		
				Safety GND.	1	
		Do une la 11th o cuible		LLCR		
		Durability with	EIA-364-09, 500 mate/unmate cycles	DWV	Pass	
		Misalignment		Safety GND.		
F	RVPX DC / RVPX BP	Electrostatic Discharge	EN 61000-4-2	ESD	Pass	
		Insertion / Extract Force	Insertion / Extraction Force	MIL-STD-1344A, Method 2013.1	RECORD DATA	61.6Ibs <i>1</i> 51.4Ibs (initial)
				LLCR		
G RVPX DC / RVPX BP		Current Overload	IEC 60512-3	DWV	Pass	
				Safety Ground		
DWV	R requirement: +10.0mΩ Μ / requirement: NO BREAK Μ ground: 100.0mΩ MAX	DOWN, <5.0 mA LEAKAG				

3.1. Initial Examination of product

All specimens submitted for testing were representative of normal production lots. Specimens were visually examined and no evidence of physical damage detrimental to product performance was observed.

3.2. Low Level Contact resistance

All low level contact resistance measurements, taken at 10 milliamperes maximum and 20 millivolts maximum open circuit voltage. All measurements had a maximum average change in resistance (ΔR) of less than 5 milliohms after testing, and a maximum individual change in resistance (ΔR) of less than 10 milliohms after testing.

3.3. Safety Ground

All low level contact resistance measurements, taken at 100 milliamperes maximum and 20 millivolts maximum open circuit voltage were less than 100 milliohm initially, and less than 100 milliohm after testing.

3.4. Dielectric Withstanding voltage

Leakage current was less than 5.0 mA and no dielectric breakdown or flashover occurred.

3.5. Random Vibration

No discontinuities were detected during vibration testing. Following vibration testing, no cracks, breaks, or loose parts on the specimens were visible.

3.6. Mechanical Shock

No discontinuities were detected during mechanical shock testing. Following mechanical shock testing, no cracks, breaks, or loose parts on the specimens were visible.

3.7. Bench Handling

No discontinuities were detected during testing. Following mechanical shock testing, no cracks, breaks, or loose parts on the specimens were visible.

3.8. Humidity / Temperature Cycling

No evidence of physical damage was visible as a result of humidity/temperature cycling.

3.9. Salt fog with SO2

No evidence of physical damage was visible as a result of exposure.

3.10. Dust Contamination

No evidence of physical damage was visible as a result of exposure to dust particles.

3.11. Electro Static Discharge (ESD)

No evidence of physical damage was visible as a result of testing.

3.12. Mating Force

All mating force measurements were less than 0.75 N [2.7 oz] than per contact.

3.13. Unmating Force

All unmating force measurements were greater than 0.15 N [0.54 oz] per contact.

3.14. Durability

No physical damage occurred as a result of mating and unmating the specimens 500 times.

3.15. Current Overload

No physical damage occurred.

3.16. Final Examination of Product

Specimens were visually examined and no evidence of physical damage detrimental to product performance was observed.

4. Test Methods

4.1. Initial Examination of product

Specimens were visually examined. Parts were checked for proper assembly and mounting. Parts were checked for evidence of physical abnormality detrimental to product performance.

4.2. Low Level Contact resistance

LLCR measurements were performed per EIA-364-23B or MIL-STD-1344A, method 3002.1. LLCR testing was performed at the beginning of each test group to establish a baseline and after tests according to the test sequence plan. Failure is defined as a resistance increase of greater than 10 m on any individual contact, or greater than an average of 5 m per connector module.

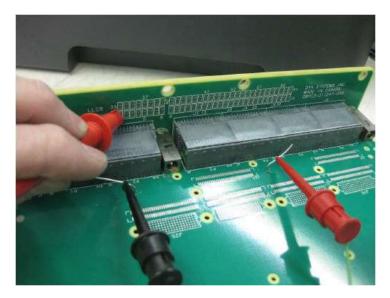


Figure 4: Typical LLCR Measurement set-up

4.3. Safety Ground

Safety ground testing was performed using a 4 point measurement with low voltage and current. The measurement was taken across each of the three alignment pin/socket contacts. Resistance shall be less than 0.1 ohm (ref. MIL-STD-464, A5.10.4, Shock, fault, and ignitable vapor protection)

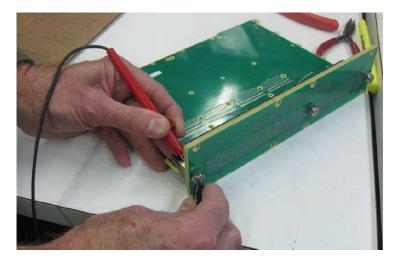


Figure 5: Typical Safety Ground Measurement set-up

4.4. Dielectric Withstanding voltage

Dielectric withstanding voltage was tested in accordance with MIL-STD-1344A, Method 3001.1. The test voltage was 500 V AC (rms) at 60 Hz. DWV was performed between contacts with the closest spacing, and was not done on contacts reserved for LLCR or interrupt monitoring. Failure is defined as arcing, flashover, or leakage current of greater than 5 milliamperes.

4.5. Vibration

- **4.5.1** Samples were subjected to a 10 minute sine vibration sweep of 5 g between 50 and 2000 Hz to identify their resonant frequencies and transmissibilities. Response accelerometers were located at the areas of highest displacement/acceleration of the first 3 vibration modes, e.g. center of middle rib. The frequency and transmissibility data was compared to data from typical 6U x 160mm conduction cooled product to ensure similarity.
- 4.5.2 Samples underwent different random vibration tests, according to MIL-STD-1344A, Method 2005.1. The first sample was tested to Test Condition V, letter D (0.1 G2/Hz max., 1.5 hours per axis) as a minimum requirement of VITA 46. The second sample was tested to further explore the connector capability. The vibration level was applied as a step stress, i.e. 0.125 G2/Hz for 15 minutes, 0.15 G2/Hz for 15 minutes, 0.175 G2/Hz for 15 minutes, and 0.2 G2/Hz for 45 minutes, for a total duration of 1.5 hours.

Figure 6: Vibration test set-up

4.6. Mechanical Shock

Each sample underwent shock following MIL-STD-1344A, Method 2004.1, Test Condition A (1/2 sine, 50 g in perpendicular axis, 80 g in other axes, 11 ms, 3 hits from both directions in each of 3 mutually perpendicular axes for a total of 18 hits).

Figure 7: Mechanical Shock test set-up

4.7. Bench Handling

One group B sample was tested in accordance with MIL-STD-810F, Method 516.5, Procedure VI.

4.8. Humidity / Temperature Cycling

One Group C sample was exposed to humidity and temperature cycling per MIL-STD-1344A, Method 1002.2, Type III (240 hrs.). No polarizing voltage was used. The sample was in a mated condition.

4.9. Salt fog with SO2

One Group D sample underwent Salt Fog with SO2 per ASTM G85 (Annex A4, Cycle A4.4.1). The test sample was exposed in the mated condition in a sheet metal container.

Figure 8: Salt Fog with SO₂ test set-up

4.10. Dust Contamination

One Group E sample underwent dust testing per MIL-STD-810F, Method 510.4, Procedure I (Blowing Dust, particle size $< 150 \, \Box$ m, velocity 1750 ft/min). The sample was mated. The dust test on these two samples was followed by a Blowing Sand test, also per MIL-STD-810F, Method 510.4, Procedure II (Blowing Sand, particle size $> 150 \, \Box$ m but $< 850 \, \Box$ m, velocity 5700 ft/min). The test vehicles had excessive deposits removed using acceptable methods (ref. MIL-STD-810F).

4.11. Electro Static Discharge (ESD)

One Group F sample was tested for ESD protection using EN 61000-4-2. The test was performed on the module connector half. A 150 picofarad source capacitor, charged to 500 to 15,000 volts, discharged through a 330 ohm resistor did not result in greater than 20 volts to any contact, measured relative to ground.

4.12. Mating Force

The module insertion and extraction forces shall be tested in accordance with MIL-STD-1344A, Method 2013. Fixturing was representative of actual hardware. Forces were recorded on the third mating/unmating cycle. The maximum rate of mating and unmating was 10 cycles/minute.

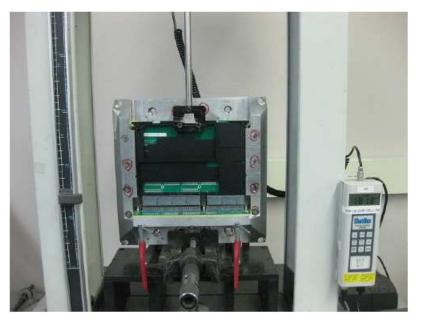


Figure 9: Mate / Extraction force test set-up

4.13. Unmating Force

The module insertion and extraction forces was tested in accordance with MIL-STD-1344A, Method 2013. Fixturing was representative of actual hardware. Forces were recorded on the third mating/unmating cycle. The maximum rate of mating and unmating was 10 cycles/minute.

4.14. Durability

The Group F sample of 3.7 underwent 500 mate/unmate cycles with an initial misalignment of 2 mm (0.079") between the connector halves for each cycle. VI, LLCR, and DWV was performed after 200 mate/unmate cycles, as well as 500 cycles. The misalignment can be in any radial direction in the plane of the backplane (note that a fixture was required to perform this test). The test was conducted in accordance with MIL-M-28787. There was no permanent physical deformation of either half of the connector assembly.

4.15. Current Overload

The Group G samples were tested per IEC 60512-3. The current overload was done on both signal contacts (1 sample) and power contacts (1 sample), for two time periods; 5 minutes (at 150% of rated current) and 2 hours (at 125% of rated current). The samples were mated but without a mounting substrate. There was no electroplate peeling or discoloration. The allowable LLCR value after current overload is a 25% increase over the initial value (ref. MIL-C-28754).

4.16. Final Examination of Product

Specimens were visually examined for evidence of physical damage detrimental to product performance.

5. Conclusions

The R-VPX ruggedized VITA 46 connectors listed in paragraph 2.1., conformed to the electrical mechanical and environmental performance requirements of the VITA 46 test specification.